Theory of electron transport in a strong magnetic field
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A simplified system of hydrodynamic equations, which is valid for an arbitrary
ratio of the transverse scale of inhomogeneity to the Larmor radius of ions, is
proposed for the description of nonlinear low-frequency plasma oscillations in a
tokamak and in other systems with a strong magnetic field. General properties of
this system are discussed and the anomalous coefficients of electronic thermal
conductivity and of plasma diffusion are estimated.

Experiments have shown that a complicated activity of a collective nature is
always present in a tokamak plasma, confined and stabilized by a strong magnetic
field. This activity manifests itself in low-frequency oscillations with finite amplitude
and in the anomalously high diffusion and electronic heat transfer. To describe these
phenomena we can use simplified equations, in which the presence of a very strong
magnetic field is taken into account explicitly. Within the framework of magnetic
hydrodynamics, such equations were obtained by us' by expanding the MHD equa-
tions in inverse powers of the longitudinal magnetic field B,. These equations turn out
to be very useful for describing an entire series of collective phenomena in a tokamak
plasma: reconnection of the magnetic field on the mode m = 1,> nonlinear tearing
modes and tearing instability.’® These equations are, however, inadequate for finding
the diffusion and thermal conductivity due to small-scale turbulence, and they must be
generalized to scales considerably smaller than the average Larmor radius of ions, p;.

To obtain the equations of nonlinear dynamics in a strong magnetic field, we shall
explicitly take into account the fact that the longitudinal component of the magnetic
field B, is much greater than the transverse component B, . We shall model the geome-
try of the tokamak by a straight cylinder of length L = 27R, where R is the large
radius of the torus. We orient the z axis of the coordinate system along B,,. The field B,
remains essentially constant with slow flows of the low-pressure plasma, so that the
condition div B = 0 reduces to div B, = 0, which permits introducing the stream func-
tion :

B, =le, V¥], (1)

where e, is a unit vector along the z axis. In accordance with (1), the electric field can
be represented in the form

E=-V¢+ez—%- 2)
c ot

To find the equation for ¢, we shall use the drift kinetic equation for electrons
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where b = B/B,. In a tokamak the distribution function fis close to the Maxwellian
function f,, so that we can set f = f; + f, where fis small. For this reason Eq. (3) can be
linearized relative to it. The equation for ¥ can be obtained by multiplying (3} by v,
and integrating with respect to v .

The equation for f which can be solved by a standard Fourier transformation
method, gives

3y B Vo, cn

—=c— (Vp ——E&) +
ot Bo(¢en) 47

where 7} is the collisionless resistivity of the plasma, which in the Fourier representa-
tion is found from the relation
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Here v, = \/2T,/m, m is the mass of the electron, and Z is the so-called dispersion
function.® Since in what follows we shall need only the real part of 4, we set approxi-
mately

m for w?<kiv?

e*n |Te

3>
14
=
1)
3
Q
=

0 for w?> k|2l vi.

where k| is the characteristic average wave number for perturbations. Because of the
toroidal nature of a tokamak, a satellite addition + 1/¢R appears in k . This addi-
tion is the main contribution to Re 7 if gR <v,/w. We are interested in oscillations
which have the form of excitations that are strongly elongated along the magnetic
field. In such oscillations the field-aligned motion of ions can be ignored.

The equation of continuity can be obtained by integrating (3) along v,

U T6]n = ~— (bV)A 7
at Bo[ez o= e PVALY: g

Here we replaced nvy, by —j/e, where the field-aligned component of the current
density, according to (1), is

j=_C A . 8

I A ®)

For ions it is sufficient to exarmine plane-parallel flows in a potential electric field

E = — V¢. Experiments have shown that small-scale fluctuations of the plasma den-

sity in tokamaks are nearly isotropic. We may therefore assume tentatively that the ion
oscillations occur against a uniform background, r, = const. In this case, however, the
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coupling between the density fluctuations 72 and ¢, which follows from the kinetic
equation for ions, is well known,
no {1—exp(p? ApI, (014D} ¢, 9)

P=_ €
T.

1
where T; is the temperature of the ions, p? = T,/Mw?%,, wp = (eBy)/(Mc), M is the
mass of an ion, and I, is the Bessel function of an imaginary argument. Substituting
n = ny + n into (7), we obtain

ol ¢ BV
Mn {—+ —[e, V$] VT } = — A, ¥,
" B, & oIVE ) =AY 10)
_ - co
I=—p?{1—expp}Aplo (—p} ApY g (11)
0

Equations (4), (7), and (10) are the basic system of equations for dynamics of a
plasma in a strong magnetic field. For the temperature 7, depending on the desired
accuracy of the description, we can either set approximately bVT, = 0 or we can use
kinetic equation (3).

To clarify what happens with magnetic surfaces, it is convenient to examine an-
other equation for the surface @ which moves together with the plasma,

dq):a¢>+c 961V ®=0 (12)
dr ot b’olez AV e=0.

If initially we choose BV® = 0, then in the ideal case, 71 = 0O, the lines of force
will lie on this surface in the future as well. In other words, with 7 =0, Eq. (12),
together with (4), leads to the condition (d /dt )(BV)® = 0. If, however, 7 5£0, we would
have

2 A
%(vaaf?mnzsmvm, (13)

for any surface that satisfies Eq. (12). Now the lines of force lying on the surface
& = const at ¢ = 0 begin to “penetrate” through it with time, giving rise to the trans-
port of particles and heat across the plasma column.

Let us consider the equation of continuity (7). It is easy to verify that at 7 =0 it
conserves the number of particles within the surface, @ = const, i.e., there is no trans-
port. It can also be shown that because BVT, = 0, there is also no heat flow. Thus the
convective transport of heat and particles in these oscillations can occur only due to
the finite conductivity.

Using Eq. (12) we can obtain an equation for the flow of particles and heat.
However, even without calculations, it is evident that the only scale for the coefficients
of thermal diffusivity’ and diffusion is the coefficient of “magnetic” diffusion ¢*7/4,
which characterizes the rate at which the lines of force pass through the plasma,
consistent with Eq. (13):

A .
cn ¢t v

Doy~ Ten S te g 14
Xe ™ 4 wp, R (14)
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where € appears in this equation due to the ballooning noted previously.

These quantities have this scale in tokamaks with resistive heating and low plas-
ma pressure, if there is no reason to expect very high oscillations.

YWhose amplitude is a factor of € (¢ = #/R ) lower than the amplitude of the fundamental harmonic.
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