Absorption of light by glasses in the far infrared
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An explanation is proposed for the deviation from the Debye shape of the
absorption curve of glasses.in the far infrared.

At present, it is generally accepted that the main features of the dynamics of
glasses in the terahertz frequency region are associated with quasilocal oscillations
(QO).! There is also a connection between the appearance of a maximum in the
absorption curve, represented in the form I'(w)/w (T is the absorption coefficient and
o is the frequency), in the far infrared, and the density of states of the quasilocal
oscillations.? However, data on inelastic neutron scattering in a-8i0, (Ref. 3) show
that the symmetry of quasilocal oscillations in this material does not permit them to
be active in infrared absorption.? In the present paper we analyze the effect of quasi-
local oscillations on the infrared spectra in such a case.

At the core of our treatment is the QO—phonon interaction and also of short-
range and medium-range order in the spatial distribution of the photon-phonon cou-
pling parameter. The only difference in the expression for the absorption in compar-
ison with the Debye model in the given case consists of the necessity of taking into
account the renormalization of the phonon Green’s function. If we assume that the
main contribution to the absorption comes from phonons of any polarization, then we
can write for the absorption I'(€)

L(e) « e fc(k)lm G(ek)dk, (1)

where e=w?. The effective photon—phonon coupling parameter c(k) is proportional to
the spectral density S(k) of the inhomogeneities of the real coupling parameter. The
proportionality coefficient depends on the model of this interaction and is equal either
to a constant* or to &% (Refs. 5 and 6).

Treating the quasilocal oscillations as in Ref. 7 in terms of resonance scattering of
phonons in a random pseudopotential, we write the renormalized Green’s function in
the form G(k)= [e—ssz—Z(e)]_l, where s is the speed of sound, and the mass
operator 2 takes into account the effect of the quasilocal oscillations. We ignore its real
part, and write its imaginary part in the form Im X =¢£(¢€), where, following Ref. 7,
we assume £=p&>2,

In order to obtain a general representation of the behavior of the integral (1), it
is convenient to consider first its asymptotic behavior for the special case of the
function cy(k), which behaves like k* for k<k, and decays faster than k2 for k>k,
(k, characterizes the inhomogeneity scale 7.~k ). In this case it is not difficult to
obtain
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A co(k)+a0\/E§ e<e, =5k, E<1

€

— =) +afeV? ee, <1, (2)
a £ e e>e, &>1

where we have assumed that €, lies in the weak scattering region £«<1. Now we can
obtain analogous expressions for the two other types of functions ¢(k): ¢;(k), which
is proportional to const for k<k, and decays faster than k=2 for k>k, and c,(k),
which, is proportional to k* for small values of k and proportional to const for k>k,:

A(e) Fa)® et e<e

—=am (k) + ‘| <, (3)

+a'Pge2 s,
where the superscripts refer to ¢;(k) and the subscripts refer to ¢,(k). As a nontrivial
fact it should be noted that in the case under consideration the quasilocal oscillations
can give a negative contribution to the absorption. In the strong scattering region the
asymptotic behavior of the absorption curve for the functions of the type ¢, has the
form

r
(ee)z(l+§2)1/4 cos(1/2 arctan £), (4)

whereas in the case of the functions ¢; the absorption in this limiting case behaves the
same as for ¢

These results allowed us to carry out a more detailed study of the absorption
curve. For this purpose it was convenient to choose the function ¢(k) in the form

Cspr(k)=(1—273) "1 [28(k/2) —z73So(K) ], (5)

where S, is assumed to be a function of the type ¢;. This function is characterized by
two correlation radii 7, and »,, z=r,/r,>1, and can be considered as a generalization
of the Schiomann function used to describe experimental results in the charge- defect
model.* The latter model is obtained from Eq. (5) in the limit #,=>0. This function is
useful because it can obtain different forms of the absorption curves characteristic for
each of the above-introduced functions ¢ as functions of the order parameter z. In
addition, taking into account »,70 means taking into account the short-range order,
which is completely natural from a physical point of view and turns out to be extraor-
dinarily important for the problem under consideration.

Using Egs. (2)-(4), we obtain any asymptotic limit of the absorption curve for
the function cgy;; however, of greatest interest is the intermediate asymptotic limit
sr1_1<a)<sr2_ ! (£«1), which has the form

A(e)
—— <esur(k) —£a,e 24z ag e). (6)

Clearly, taking short-range order into account led to the appearance of the negative
contribution, which grows rapidly with frequency, in relation (6). Under certain
conditions this term can lead to the appearance of a maximum in the curve 4(€)/e.
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FIG. 1. Different shapes of the absorption curves of I'(€)/e for the function ¢y, (k).

In order to obtain numerical estimates, we calculated the absorption curve using
the function cgy; (k), where S, was chosen to correspond to the exponential correla-
tion function. Figure 1 shows the dependence of the function 4(€)/ €? on the normal-
ized frequency w/srl“. We found two types of absorption curves, depending on the
parameter z. For z<20 A(¢€) /€ has one maximum, which lies in the weak scattering
region £<1 (curve c). Its position is determined largely by the correlation length r;.
With increase of the parameter p and decrease of z, this maximum becomes progres-
sively sharper. For z>20 two maxima are possible: one, as before, in the weak scat-
tering region, and the second for £>1 (curve b). The shape of the curve in the vicinity
of the first maximum can be described by expression (6), and its position is deter-
mined by the parameter p and by both the two correlation lengths. With increase of p
and z, the curve becomes flatter until it disappears altogether (curve a). The position
of the second maximum is given by the expression w,,=sr; '€~ '(®,,), and with in-
crease of p it shifts toward lower frequencies, thereby becoming more pronounced.

As an illustration, we have estimated r,(,) and £(®,,) for curve b, using experi-
mental data from Ref. 2 and our own results. For the correlation lengths we obtained
the completely acceptable numbers 100 A and 1.4 A for medium-range order and
short-range order, respectively. The parameter £(w,,) turned out to be roughly 0.025,
while an estimate of this same quantity based on measurements of the thermal con-
ductivity® gave roughly 0.006.

Thus, the theory of absorption in the far infrared by amorphous SiO, proposed in
this paper leads to reasonable estimates of the main parameters and allows one to
explain how quasilocal oscillations affect the absorption curve when they do not
interact with the light directly and when their density of states does not contribute
directly to the absorption. Note also that our results do not vary qualitatively if some
other sufficiently rapidly increasing function £(€) is chosen.
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