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The stochastic equations of motion of a particle in a bistable potential have been
studied numerically for the case in which the temperature is comparable

with the height of the potential barrier. Analysis of the results of this study
makes it possible to give a qualitative explanation of a number of

unusual features of the lattice dynamics of Ti and Zr and their alloys.

Recent experiments on inelastic neutron scattering in Ti and Zr have once again
attracted interest in the long unsolved problem of describing the lattice dynamics
under conditions of strong anharmonicity near a structural instability. As far back as
1975-76 (Refs. 2 and 3) a number of unusual phenomena were detected in Zr;_ Nb,
alloys: a central peak in the neutron scattering and a “‘symmetry-forbidden splitting of
the phonon branches,”? and also anomalies in the quasielastic scattering of Mdssbauer
radiation.” In Ref. 1 it was shown that the transverse phonon branches in the high-
temperature B phase (bce) of pure Ti and Zr in the (110) and (112) directions,
associated respectively with the 8—a (hcp) and S— o transitions are poorly defined,
and instead of a “central peak,” characteristic of alloys, a distribution of the scattered
neutrons over the transferred energy is observed. The present paper is dedicated to a
discussion of these phenomena.

In general, anharmonic effects in any crystal can be considered in the framework
of perturbation theory in the adiabatic parameter as effects of weak nonideality of the
phonon gas. However, for selected vibrational modes in metals, near the structural
instability, the anharmonicity of the potential energy ¥ can be very strong (see the
review article in Ref. 4). This is confirmed by direct calculation by the frozen- phonon
method for various deformations of the lattice in B-Zr>® and Ba.” Figure 1 shows a
graph of ¥ (x) for deformations x corresponding to a longitudinal phonon with wave

vector q=2(%3}), which is associated with the B—w transition, (a is the lattice con-

stant) and the transverse phonon with q=2(3,1,0), which is associated with the S-a
transition. In the first case the deep minimum corresponds to the w-phase, and the
shallow one, to the B-phase, which indicates that 3-Zr is unstable at T=0 with respect
to the B-w transition [the potential V(x) is symmetric about the minimum]. In the
second case the maximum of ¥ (x) at x=0 indicates that B-Zr 1s unstable at T=0 with
respect to the S—a transition. The problem of lattice dynamics with these potentials is
a model-based problem, since the B-phase, which is stabilized as a result of entropy

contributions at high 7', was actually investigated in Refs. 1 and 2. Unfortunately, a
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FIG. 1. Dependence ¥(x) in B-Zr for a longitudinal phonon with ngf(%,%,%) (solid curve)® and for a
transverse phonon with q=—;-r(§,5,0) (dashed curve);® x is in units of the interplanar distance d (d
=a \/3/ 6andd = a/ \/i, respectively).

rigorous calculation of the type carried out in Refs. 5~7 with these contributions taken
into account has been so far impossible. However, it can be assumed that such features
of V(x) as its bistability and the order of magnitude of the barrier height are char-
acteristic of metals and alloys near the martensitic transitions.

Our simple model of the lattice dynamics with potential ¥'(x) takes into account
the interaction of a selected vibrational mode (corresponding to the collective variable
x) with the remaining phonon degrees of freedom by introducing the phenomenolog-
ical extinction parameter ¥ and the random force F(¢) in the spirit of the Langevin
equation for Brownian motion.® We express x in units of the interplanar distance d and
introduce the dimensionless quantities ¥=7y/mwq, f=F/mdw, V(x)=V(x)/ad
and 7=tw,, where m is the atomic mass of Zr, & = d—23 V/&lex_x() and x; is the

position of the minimum in the B phase (at the S-w transition) or in the a phase, and
wq = +Ja/m is the frequency of the corresponding phonon. The dynamics of the se-
lected variable is described by the stochastic equation

d’x d _ _dx
=1 V) 7 -+ (1), (1)

where f(7) is Gaussian white noise:

(f(R)f(r')) =2¢T8(r—7"). (2)

Here the temperature T is expressed in the units ad”. Given condition (2), Eq. (1)
describes relaxation of the distribution function P(x,7) =(8[x—x(7)]) to the equilib-
rium value® Py(x) ~exp[—V(x)/T).

By virtue of the anharmonicity of the potential ¥(x), the frequency spectrum
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S(w)= fw dr{x(1)x(0))expiwT), (3)

describes a wide distribution even for 7=0. Indeed, if Q(H) is the frequency of the
oscillations with energy H, where Q(H)=2n/T,(H), where T((H) is the period of
the oscillations, then we have

dH H
So(w) « f —Q—(I“I—)CXP(T) Slo-Q(H)]. 4)

Since H=H_ and Q(H) «[In(H/|H—H_| )]_1 near the separatrix, we have in the
limit @ -0

1
Soa)oc;)gexp(—const/w). (5)

By virtue of relation (4), the spectrum S(w) extends from w=0 to 0 =9Q,,,,. There-
fore, in order to obtain, in agreement with the experimental data,' a wide frequency
distribution with prescribed ¢=Q, it is not necessary to assume the extinction ¥ to be
unusually large; we will choose 7 in the interval 10~%-10~", which is characteristic of
phonons in metals at high temperatures.’

The standard method of investigating Eq. (1) is to solve the corresponding
Fokker-Planck equation for P(x,7) for the case in which the transition time between
the wells 7,, is large in comparison with o ! (see Ref. 8). In the interesting case in
which T is of the order of the barrier height (AE=0.004 mRy for the S-o transition
in Zr’) the problem must be solved numerically.

The dynamics of the investigated system were modeled by solving Eq. (1) nu-
merically, using the method of direct integration of the stochastic equations.’® In the
Fourier transform (3) x{r) is replaced by x(7) —Xx, where X is the mean displacement
during the integration time. In this way the contribution to S(w) of static displace-
ments of the form X5(w) is eliminated from consideration.

Figure 2a shows the typical form of the phase portrait x(x) for the S—w transition
at T=0.6AE. It is possible to distinguish three types of phase trajectories and asso-
ciated characteristic frequencies: 1) trajectories corresponding to motion in the upper
(B) well with frequency wg=~ag; 2) trajectories in the lower () well with frequency
w,~0.80p; 3) “migratory” trajectories, encompassing both wells with frequency wg,
~0.35w,. This picture corresponds to a time interval on which the system spends a
large part of its time in the central (@) and left () wells. Figure 2b shows the spectral
density S(w), obtained during the modeling interval 7=1000. In addition to the
pronounced peaks near o=, and o =dag,, we see a frequency band which extends all
the way to @=0. Such a band is formed when the trajectories pass in the immediate
vicinity of the separatrix. The significant contribution to S(w) of these trajectories is
due to the long time the system spends (x=0) above the potential barrier during the
transition from one state to the other. Note that the dynamics of the system in the
B-state contributes almost nothing to the spectral density [S(wg) =0], because of the
extraordinarily short residence time in the upper well.

531 JETP Lett., Vol. 56, No. 10, 25 Nov. 1992 Gornostyrev et al. 531



2,00 a
1001
o -
_7‘00 —
~2.00 1 | | 1
-g40 010 060 "Wz
§ a1
0041 b ’
)
g1
} 1
003 i i
|
1 I
fh N 008
H 1 '
1 1l
I 1
001 | ‘: FIG. 2. Phase portrait (a) and spectrum
! : : | —{004 S(w) (b) for the mode corresponding to
\ ) : the B-w transition for T=0.6AE, ¥
A \ "\ =0.075. The dashed curve in b shows the
§e AN spectrum at 7'=0.5AE and the same value
] A k| 0 of 7 {corresponding vertical axis—to the
0 020 040 060 080 w/w, right).

As the above calculations show, at decreased temperatures (7'<0.5AE) the sys-
tem spends almost all its time in the o well. With increase of the temperature, the
contribution of the trajectories lying above the separatrix (o~ wpg,) increases and for
T>0.7AE predominates. Decrease of the magnitude of the extinction (from 0.065 to
0.085), while not changing the overall picture, enhances the contribution of the low-
frequency dynamics.

Figure 3 shows analogous results for the mode associated with the -« transition.
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the right).

In this case the “phonon” contributions to S(w) (which are associated with oscilla-
tions in one of the wells) are even less important and nearly the entire spectral density
is due to the open trajectories.

Upon lowering the temperature to 7'<(0.2-0.3)AE, the standard picture of the
spectrum, which consists of a phonon peak at w=w, (or two peaks for an asymmetric
potential well) and a central peak associated with the rare transitions between the
wells, is reconstructed.
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Two qualitative results which are most important for interpretation of experi-
mental data may be singled out.? In general, it can be assumed that even strong
anharmonicities reduce to a renormalization and possibly to a splitting of phonon
frequencies. In fact, at T>0.5AE, the main contribution to the spectral density comes
from the open trajectories, which are basically outside the scope of the description of
the lattice dynamics in terms of phonons. In an interpretation of experimental results
the corresponding peaks in S(w) w=(0.3-0.4)w, in the models we have considered
may be erroneously attributed to the appearance of additional “soft” phonon
branches. This may be the real reason for the symmetry-forbidden phonon splitting in
Zr-Nb alloys,” which is accompanied by a significant broadening of the phonon
branches.

Another important result is the transition from a nonphonon-type spectrum to a
usual one (one with frequency splitting and a central peak) with decrease of the
temperature. According to Ref. 1, the latter is characteristic of titanium and zirconium
alloys in contrast to the pure metals. The simplest explanation of this fact would be
that in pure Ti and Zr the $-phase is stable at higher temperatures, and the difference
in the dynamics of the metals and the alloys is due simply to the parameter T/AE, to
which the form of S(w) is very sensitive.
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