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A system of thermohydrodynamic equations describing the evolution of large-
scale pertubations in a rapidly rotating layer of fluid, heated from below,

is analyzed in the Boussinesq approximation. The incorporation of viscosity, the
deformation of the free upper surface, and the heating leads to new terms

in the equation. These new terms represent positive and negative diffusion. One
solution of the equation corresponds to localized Rossby vortices. There

is an amplitude increase for perturbations of sufficiently large scale. A
quasisteady solution is derived for a nonlinear 1D equation by numerical
calculations.

1. Among the important advances toward resolving the fundamental problem of
the long lifetime of the great red spot of Jupiter are models in which the spot is
associated with a solitary vortex.! In addition to the nonlinear effects which make
possible the existence of a localized structure, there must be some mechanism to
compensate for the dissipative loss, since the incorporation of dissipation results in the
decay of the vortex over a time on the order of three years (Ref. 2). At present, the
most popular point of view is that the loss is replenished by energy supplied from the
unstable zonal shear flow against whose profile the spot is observed.> However, since
over the more than three-hundred years of observations the dynamic characteristics of
the Jovian atmosphere have varied rather significantly,’ it is difficult to rule out the
possibility that this mechanism cuts off in certain time intervals. We would also like to
have a pumping mechanism based on some constant properties, which do not depend
on the time. As we show below in the example of the simplest model, the role of such
a property may be played by one of the important distinguishing features of Jupiter:
the heating of the atmosphere from lower-lying layers.*’

2. Let us consider a rotating layer of liquid which is heated from below and which
is unbounded horizontally. The equations are written in the Boussinesq approxima-
tion. The boundary conditions differ from the classical Rayleigh formulation® in the
following way: It is assumed that the lower surface is undeformable and that the upper
surface is a deformable free surface. The surfaces are held at constant temperatures.
The pressure at the upper boundary is zero, while at the lower boundary the derivative
of the pressure along the vertical coordinate is zero, by virtue of our assumption that
there is no tangential stress. We consider the case of rapid rotation, in which the
square root of the reciprocal of the Taylor number is a small parameter of the problem,
Ta ~!241. Carrying out a quasigeostrophic expansion, we incorporate the viscous
terms, along with the nonlinear advection terms. We must do this in order to satisfy
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the relation among the horizontal component of the velocity ¥, the kinematic viscosity
coefficient v, and the horizontal scale L: ¥V ~v/L. For sufficiently large horizontal
length scales of the flows, at L>1, heat diffusion is incorporated in the heat-
conduction equation only along the vertical coordinate. The approximation of a beta
plane is used to model flows on a sphere. As a result, we find the following system of
equations, which differs from that ordinarily used in geophysical hydrodynamics’ in
that it contains diffusion terms:
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Here p is the deviation from the unperturbed (in the absence of a large-scale defor-
mation or temperature) linear hydrostatic profile, w is the vertical velocity component,
ugy and v, are the geostrophic horizontal velocity components, and T is the deviation
of the temperature from the linear hydrostatic profile found in the absence of a de-
formation of the surface. We switch to dimensionless units as in Ref. 6. Here R is the
Rayleigh number, P is the Prandtl number, Ta= D? is the Taylor number, and B is a
parameter characterizing the beta effect: the latitudinal variation of the angular rota-
tion velocity.

We write the boundary conditions on the perturbed quantities as follows:
T=0, p,=0, w=0 at z=0; (5)
T=h, p=gh, w=Ph+uyh,+voh, at z=1+h. (6)

Here g is a parameter characterizing the depth of the liquid, and # is the deviation of
the surface from its unperturbed state.

The solution of this system of equations is the sum of a barotropic component
(with a pressure distribution which does not depend on the vertical coordinate) and
a baroclinic component. We consider the case in which the baroclinic component can
be ignored everywhere in Eq. (1) except in the last term (quasibarotropic flows). A
necessary condition here is R €g. From the condition that the last baroclinic term be
retained along with the next-to-last diffusion term we find R ~ g/ L% These relations
hold at L> 1. In other words, they actually do not introduce the further limitations
which are used in a quasigeostrophic expansion.

The solution of the static heat-conduction equation with a perturbation
h=const, within terms quadratic in A4, is 7y, =zh. Taking into account the deforma-
tion of the free upper surface, we must use 7’=zh(x, y) as a solution for the temper-
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ature. The presence of a deformation leads to the appearance of horizontal tempera-
ture gradients. The baroclinic component is a “thermal wind”’ which is rotating in
either a cyclonic or anticyclonic fashion, depending on whether the free surface de-
scends or rises. Substitution of the solution into the heat-conduction leads to an
expression w=z(Ph,+ug h,+vy h,) for the vertical component of the velocity. This
result agrees with boundary conditions (5) and (6).

Integrating Eq. (1) along the coordinate z, taking account of the baroclinic
component of the pressure only in the last term, and taking account of the quadratic
nonlinearity in 4 in the S term, we find the equation

q2

q q q R
Phy—35 8 hi— 3 J(hBy ) =5 B (W + W bt 7 A3 h+ 2 82 h=0. (7

This equation differs from the Obukhov—Charni equation in that diffusion terms with
positive and negative diffusion coefficients have been added, and the nonlinearity in A
in the B term has been taken into account. The solution of the equation after a
linearization in terms of 4 yields the critical value of the wave vector,

kcr:(R/q)l/zs (8)

which forms the boundary between growing and decaying modes.

The excitation of a barotropic wave which deforms the free upper surface in a
layer of liquid heated from below gives rise to a baroclinic component, which is
capable of intensifying a deformation.

We substitute the value of the bulk expansion coefficient a for Jupiter,’
a~6x1073(1/K), into Eq. (8) for the critical value of the wave number,
k.,=(aAT)'2. The temperature difference between the upper and lower surfaces,
AT, is estimated to be AT ~10 K. The relation for the scale at which amplification
begins becomes L ~ 1000 km. This figure is much smaller than the size of the great red
spot of Jupiter, ~10 000 km. This estimate thus supports the suggestion that the spot
may be sustained by the mechanism which has been found for the amplification of
vortex perturbations.

3. If the shape of the spot is to be maintained in a steady state, there is the further
requirement that the pumping be balanced by a dissipation and not lead to a disruption
of a localized vortex. Because of the long-wave instability inherent in Eq. (7), there
can be no exact steady-state localized solutions: A negative diffusion will lead to a
growth of noisy perturbations. If the pumping is sufficiently weak, however, and if the
growth time of the noisy perturbations is sufficiently long, a vortex whose amplitude
and shape do not change substantially during the growth of the perturbations can be
regarded as a quasi-steady-state structure.

In the dissipationless case, the nonlinearity described by the fourth term in Eq.
(7) plays a governing role in maintaining the localization of large-scale vortices.> The
role of this nonlinearity in establishing the balance required to maintain the quasi-
steady amplitude and shape of the vortex can be studied most simply in this case in the
example of the 1D version of Eq. (7):
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FIG. 1. Solid curve—Steady-state solution of the 1D equation with positive and negative diffusion; dashed
curve—solition solution of the regularized long-wave equation of the same amplitude. R =500, Ta=10%,
¢=100, B=2, P=1. The arrow shows the drift direction.
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On the one hand, this equation is a generalization of the Kuramoto-Sivashinsky
equation'®!! (a dispersive term A,,, is added); on the other, it is a generalization of the
regularized long-wave equation (terms with positive and negative diffusion are
added).'? Numerical calculations have been carried out for Eq. (9). A periodic bound-
ary condition corresponding to the traversal of a circle of a sphere was used along the
horizontal coordinate. An initial perturbation was specified in the form of an elevation
with an amplitude amounting to 0.1 of the thickness of the layer and constituting a
steady-state soliton solution of the equation without the diffusion terms.'* The time
evolution of the perturbation was then calculated. When a zero Rayleigh number was
specified, a decay of the perturbation was observed over a time on the order of 5
dimensionless units. When a nonzero Rayleigh number was specified, the amplitude of
the perturbation increased. At the same time, the crest of the pulse became sharper,
and its leading edge steeper, by virtue of a nonlinearity. As a result, the role played by
the term with a positive diffusion increased, and the increase in the amplitude came to
a halt. The elevation reached a steady-state shape after a time on the order of 100
dimensionless units. Figure 1 shows the solution found. These calculations demon-
strate that the amplitude and shape of the elevation are preserved for a time on the
order of 150 units—up to the point at which there is a substantial increase in the noisy
perturbations. One might suggest that, again in the 2D case, this nonlinearity would
lead to the establishment of a finite vortex amplitude. When the pumping mechanism
discussed here is applied to the great red spot of Jupiter, one must also bear in mind
that the presence of zonal flows might contribute to the localization and uniqueness of
the spot. Such flows would smooth out noisy perturbations and give rise to an effective
threshold amplitude, at which growth due to the long-wave instability would begin.
This work had support from the Russian Basic Research Foundation (Project 93-02-
17014).
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