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The critical current of SIS tunnel structures in which the primary current-
transport mechanism is a resonant tunneling through a single localized

state is calculated from the Gor’kov equations. The critical current is governed
by a competition between tunneling and thermal mechanisms for the

decay of a state into a localized state. The results found here agree satisfactorily
with experimental data. They explain the anomalous proximity effect and

also the properties of grain-boundary Josephson junctions made of high-T.
superconductors.

Experimental studies of high-T . Josephson junctions with layers of semiconduct-
ing oxides have revealed a long-range proximity effect.!~’ This effect is the existence of
a significant critical current J, in structures with layer thicknesses d > 10-100 nm. It
follows from the experimental J.(d) dependence that the decay lengths £¥ of these
materials are temperature-independent and an order of magnitude longer (10-50 nm)
than in superconducting oxides (1-3 nm). Furthermore, it was shown clearly in Ref.
6 that this effect occurs in a region of oxide compositions in which a metal-insulator
phase transition actually occurs.

The latter circumstance suggests that the systems which were studied in Refs. 1-7
were actually Josephson junctions with layers of narrow-gap semiconductors. There
has been no experimental or theoretical study of the processes which occur in low-
temperature analogs of such structures.

Previous experimental studies (e.g., Refs. 8 and 9) were devoted primarily to
structures with silicon layers. The width of the band gap in Si is on the order of 0.3 eV.
This figure leads to the following estimate of £* (or of the radius of localized states,
a)(h=1):

1

= =f== ~1 . (1)
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Here m is the effective mass, u is the chemical potential, and V is the potential of the
bottom of the conduction band. At such small values of a, the situation which pre-
vailed experimentally was essentially always such that the relation d/a> 1 held. For
this reason, the theoretical models'®!' have also been limited for the most part to this
particular case."

In narrow-gap semiconductors, the height of the potential barrier (¥ —u) can
take on much smaller values. The parameters d and a are comparable, and the trans-
port of quasiparticles through the layer occurs primarily by a tunneling through one
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or two localized states. Only the normal properties of such structures have been
studied previously.'” It has been shown, for example, that their resistance R, is given
by

2d 2)
 (m+Da) (

where ¢, is the conductivity of the channel formed by m localized states.

R '=2 0, 0, T(’”miﬂ)exp(
m

Our purpose in the present letter is to study the Josephson effect in such junctions
for the case in which the effective interaction of electrons in localized states can be
ignored.

We assume that the density of localized states in the layer is small (the interaction
of quasiparticles belonging to different centers is inconsequential) and that the distri-
bution of these states is uniform over volume and also with respect to energy (at least
in an interval on the order of 7, in width near the Fermi energy E,). We further
assume that the potential barrier for quasiparticles in the layer is rectangular and that
its height and thickness satisfy the conditions

(V—p) <p, dT./(V—p)< a<d, (3)
where T is the transition temperature of the electrodes.

Under the assumptions made above, it is convenient to use the known
expression'® for the supercurrent J; to calculate the temperature dependence of J,:

ieT 2 2 *
J:: —Wz JdZ]dZdeldpzA(Zl)A (22)

X G (p1s P2y 21, 22) G _ (P2, Py» 25, 21) [sign(zy) —sign(z;) ]. (4)

Here p; and p, are transverse momenta, z;, and z, are coordinates reckoned from
the middle of the layer in the direction perpendicular to the boundaries,
A(z;)=A exp(ip/2) and A(z,) =A exp(—i@/2) are the order parameters in the elec-
trodes, @ =T (2n+41) are the Matsubara frequencies, and G, and G, are Fourier
components of the normal and superconducting Green'’s functions, which incorporate
the existence of localized states in the I layer. These components are related to the
unperturbed Green’s functions by the following relations!®!® (in the absence of local-
ized states):

G,(pp',2,2)=02m)(p—p" )G (p, 2,2') + L e P77 (p, 2, 2,) GO p', 20, 2'),
1

(5)
sz(fd3rV(r)) l—faﬂrV(r)GZ(ro’ o

Here r, is the coordinate of the localized state, V'(r) is the localized potential of this
state, and GS (79, r) is the unperturbed Green’s function in the r representation.

The first term in (5) is responsible for direct tunneling through the barrier. When
substituted into the expression for the supercurrent, it leads to a term which is expo-
nentially small in comparison with the terms describing resonant tunneling. Ignoring
it and assuming that we can set py=0 in (5) without any loss of generality, we find

201 JETP Lett,, Vol. 59, No. 3, 10 Feb. 1994 I. A. Devyatov and M. Yu Kupriyanov 201



G,(p,p' 22" )=L,Gp 2, 2)Gy(p", 2, 2'). (6)

Going through calculations like those described in the Appendix in Ref. 17, using the
known expressions for the unperturbed Green’s functions of an NIN contact with a
rectangular barrier,'® and incorporating limitations (3), we find the following expres-
sion for the amplitude for resonant scattering, L,,:

Ly =o—{————f(z)+i 2o (V 0 \/w +A2\ f(Zo) ]
(7
exp(—d/a) (exp(2z/a) exp(—2z/a) .
f@=— @ —z " (@2y+z | @ —VEmV=Eo,

where E; is the resonant value of the energy of the localized state. The resonant-
scattering amplitude L, which determines the normal Green’s function, is found
from (7) by setting A=0.

The function f(z;) in the real part of (7) determines the renormalization of the
energy level of the localized state. This renormalization is of no fundamental impor-
tance to the discussion below, because of the averaging over the energy of the localized
state in the final step of the J, calculation. The imaginary part of L' is responsible for
the decay of the resonant state because of thermal excitations (the first term) and
tunneling into the electrodes (the second term).

Substituting (6) and (7) into expression (4) for the supercurrent, we find a
sinusoidal relationship between J(¢) and the critical current:

4eTA?
Ln
—m? 2

J-d f G, (p1,21,20)G_,(p1, 21, 2p)dz

(8)

{ x| [ @ f G0 20026y (P2 200 2)d2s).

Equation (8) must be averaged over the energy and the coordinates of the localized
state. The first of these operations gives us

. (2m)?
(La, ~m>Eo ——3—n(Eo)

—1
+sign a)) "
9

where n(E,) is the density of states of the localized state. Substituting (9) into (8),
and taking an average over the coordinates of the localized state, we finally find

@ fV u
—(V ) +2f(zO)V r (

[0)
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(10)
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Here p, is the part of the resistivity of the junction which is determined by tunneling
processes, and n(zp) is the density of localized states. We see that the temperature
dependence of the critical current depends on the dimensionless suppression parameter
[ s, which is proportional to the ratio of the time scale for the decay of a state into
localized states because of thermal activation and tunneling into the banks. At small
values 'y g« 1, the last of these processes is the governing factor, and expression (10)
simplifies substantially:

47TA? 1
Jy=—3

ep, w>0 \/w2+A2(co—+- \/Z)2+A2) .

The normal resistance of the junction is governed exclusively by the tunneling of
quasiparticles. Consequently, the channels for the normal and superconducting cur-
rents coincide, and the result of the Aslamazov-Larkin thc:ory19 follows from (12) as
the temperature T approaches T,.. At low temperatures 7 < T, going over from a
summation to an integration over o in (12}, we find

2A(0)

epy

(12)

4
(J.(0)) = =—J:7(0), (13)
where JfB (0) is the critical current of SIS contacts according to the Ambegaokar—
Baratoff theory.?

As the parameter T'[ g increases, the critical current is suppressed, and in the limit
[ ¢>exp{d/a}, ie., at

alV—u
7. > (V—u)g T (14)

the critical current is exponentially smali:

32T A V—u 1
ep, (V—,u)v u 2 (co2+A2)a)exp

0>0
The temperature dependence of the critical current has been calculated numerically
for arbitrary values of the suppression parameter I'g; the results are shown in Fig. 1.
As T'|g increases, there is indeed a suppression of J.. In contrast with suppression
mechanisms which operate in structures with a proximity effect®! (SNS, SNINS, and
SNIS junctions), the J.(T') dependence remains smooth even at large values of I'; g
at temperatures 7< 0.37,. This J.(T) behavior is in reasonable agreement
with the large body of experimental evidence which has been obtained on high-T,
junctions both at grain boundaries and in structures with interlayers of semiconduct-
ing oxides.?! Also shown in Fig. 1 are experimental data from Ref. 7, found on
YBa,Cu;0,_5 /Y 1PrysBa,Cus0;_ 5 /YBa,Cus0,_ 5 contacts for various layer thick-
nesses (25, 50, and 75 nm). Although there are substantial differences in the layer
thicknesses, the differences in the experimental values of the product J. p, are small,

d
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FIG. 1. Temperature dependence of the critical
current of a Josephson junction with a localized

" state in an insulating layer according to calcula-
tions for various values of the suppression param-
eter [';s. The points are experimental.

and the temperature dependence of this product agrees satisfactorily with the theo-
retical curves. It should also be noted that experimentally J, and R, are exponential
functions of d,

J cexp{—d/E¥}, R,xexp{—d/a}, EF=a=20 nm,
with approximately equal length scales in the exponential functions.

The model proposed in this paper is so far the only one capable of explaining the
entire set of results observed in Refs. 1-7, and it gives a reasonable explanation of the
long-range proximity effect.

A resonant tunneling through localized states in barriers is apparently also re-
sponsible for the properties of grain-boundary high-T'. junctions. Evidence for this
assertion comes from not only the smooth J.(7T') dependence predicted by this model
but also Eqgs. (11) and (15), which yield an explanation of the “scaling law,” i.e., the
experimentally observed proportionality J,« p, % between the critical current and the
normal resistance of structures.
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D An expression for the critical current of SIS junctions incorporating a tunneling through single noninter-
acting localized states in a barrier has been derived only by the tunneling-Hamiltonian method, in fourth
order in the transmission and under the assumption that a strong Coulomb repulsion of the electrons at
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the localized state'? suppresses the mechanism of resonant supercurrent flow in the structures. In the case
under consideration here, this assumption contradicts the significant J, values observed experimentally for
high-Tc-superconductor structures. It should also be noted that the nature of the interaction of the
electrons at a localized state depends strongly on the parameters of the layer material. In several cases it
may even correspond to an effective attraction between electrons.'*'* U. Kabasawa er al, Jpn. J. Appl.
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