Forced motion of a domain wall in the field of a spin wave
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It is shown that the interaction of a domain wall with a packet of spin waves causes
a displacement of the wall, and in the presence of a plane wave the domain wall
moves with a constant velocity toward the wave. An exact solution corresponding
to the interaction of the domain wall with a plane spin wave is presented in an
integrable case.

In a ferromagnet with uniaxial anisotropy, ignoring the dipole-dipole interaction
and relaxation processes, Walker’s rule, which is related to the conservation of the
projection of the magnetic moment on the anisotropy axis, prohibits motion of the
domain wall. We shall show that the interaction of a domain wall with a packet of spin
waves leads to a displacement of the wall, and in the presence of a plane spin wave the
wall must move toward the wave with a constant velocity.

The dynamics of the magnetization vector S = (S, S,, S;), S? = 1 is described by
the phenomenological Landau and Lifshitz equations,

-

. i
S3=—2V(S+VS_—S_VS+), ()
i
S, =178V, —8,75;)+ 7h’a Ss)S, (2)
S+ =S| +i52‘, S_= Sl _1S2
and A, (S;) is the anisotropy energy density. We shall limit ourselves to normal inci-

dence of a spin wave (wave packet) onto a flat domain wall, choosing the direction x
along the direction of propagation of the wave.

Equation (1) has the form of a conservation law for the projection of the magnetic
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FIG. 1. I, I,, I, and Al = 24x denote the shaded areas in the figures.

moment on the anisotropy axis. It is this relation that leads to Walker’s rule, since a
displacement of the domain wall changes the magnitude of the indicated projection of
the magnetic moment of the specimen.

1. We shall examine the passage of a localized packet through a domain wall. Let
the packet be located on the left side of the wall before the collision (Fig. la) and
assume that it makes a positive contribution I, to the conserved integral

L
I=] Sydx (3)
-L

(the interval of integration includes the wall and the packet). After the interaction (Fig.
1b), as it evolves the packet passes through the wall and is partially reflected. The
contribution of the wave passing through the wall to the integral (3) is negative and the
contribution of the reflected wave is positive. But, since the amplitude of the reflected
wave cannot be too large (this contradicts the energy-conservation law), an unbalance
AT arises in the law of conservation of the projection of the moment (3), which can be
compensated for only by a displacement of the domain wall toward the left. The
magnitude of the displacement evidently is

I
Ox = “5‘ o+ —1), (4)

where I, , are the incident, transmitted, and reflected packets, respectively, numeri-
cally equal to the modulus of the projection of the magnetic moment onto the anisotro-
py axis.
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This general discussion does not depend on the function 4,(S;) and does not
require that the amplitudes of the spin wave packets be small. We assumed only that
the domain wall does not have internal degrees of freedom. Excitation of a domain
wall with a magnetic moment T would have decreased displacement (4) by 1/2. The
absence of such excitations in our formulation of the problem can be proved rigorously
for models (1) and (2) in the one-dimensional integrable case”

h, (S3) =— 5% . (5)

2. A more detailed quantitative description, based on the scattering matrix for
spin waves scattered by the domain wall, can be given for waves with small amplitude.
The scattering matrix can be calculated on the basis of a linear theory, assuming that
the domain wall is fixed in the first approximation. Let a plane spin wave with small
amplitude a, be incident from the left onto the domain wall. We then find

S, =a, exp(iw t —ikx )+ b, exp (i wyt +ikx) for x<<—L, (6)
S+Eckexp(—iwkt+ikx) for x>>L,

where L is the anisotropy scale, b, is the amplitude of the reflected wave, and ¢, is the
amplitude of the transmitted wave. From the energy conservation law it follows that

lag 12 =10, 1%+ |, 1% (7)

In the integrable case (5) the domain wall (S, = th( S8x), S, = i/ch{ £x)) is nonreflec-
tive: b, =0, ¢, = a, [(k + iB)/(k —iB)].

Let us integrate relation (1) from — L, to L,(L;>L). In calculating the integral on
the right side we shall use asymptotic expressions (6),

o L, 3 2 2
o I Sadk=k eyl ka1 =k b l? (8)
“£

Incorporating (7), we find

L,
_{ Sadx =2k |c,| 2 ¢ + const. 9)
1

Thus the domain wall must deform in such a manner as to satisfy relation (9). In our
formulation of the problem, as already noted, the domain wall does not have internal
degrees of freedom and, for this reason, the indicated deformation is a displacement in
the negative direction with constant velocity

V=—klc, *. (10)

In the integrable case (5) the exact solution, which corresponds to the interaction
of a spin wave with a domain wall, can be explicitly calculated with the help of the
inverse-problem method and it has the form
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VR +F)(1—8%)sha +8ksinB
VK +8 chA +88 coss

S3

5vk>+p* (chAacosB + ishAasinB)+p—iky/ 1 — 82

S =el® — 11
e VEk?+p% ch A+ 88 cos B 1y
e _— k 6%
A=/J\/1—62 (x'_vt—xo), B=\/1 _62 (/C2+p2)t"—kx+¢2, v = *I‘—?Z_’
v -

where &, k, ¢,, ¢,, x, are arbitrary constants. We note that solution (11) is valid for any
amplitude 0<8 <1 of the spin wave.

For a packet of waves with small amplitude, based on relation (7), the formula for
the displacement of the domain wall assumes the form

3

1

Ax = B —{’ |ck|2dlc =1;. (12)
3. The domain structure of magnets stabilizes at large distances due to mecha-
nisms that we ignore. These mechanisms are, for example, the dipole-dipole interac-
tion, the defects of the crystal lattice, the surface and geometric effects, etc. Dissipa-
tion processes and the more complicated anisotropy of real crystals should also be
taken into account. Of course, when the mentioned corrections to the model are in-
cluded, the integral I in (3) is no longer conserved. However, if the transit time of the
spin wave packet through the domain wall is much shorter than the characteristic time
of the interaction responsible for the breakdown of the integral, then the arguments

presented above can be justified.

When a packet passes through a sequence of walls, each wall is displaced in a
direction opposite to the motion of the packet and the displacement of each subsequent
wall is smaller than that of the preceding wall due to reflection and dissipation of the
spin waves; i.e., the density of domain walls must decrease slightly. Inclusion of inho-
mogeneities, impurities, and different surface and volume defects can lead to the in-
verse process—accumulation of domain walls.
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