Flute solitons in a plasma with shear
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A flute instability can give rise to vortices localized near magnetic lines of force,
according to the two-fluid approximation. The vortices in turn cause a plasma
convection across magnetic surfaces without perturbing the magnetic field.

The flute instability and the variety of forms it takes occupy a prominent place in
the theory of plasmas, because these instabilities set an upper limit on the plasma
pressure which can be maintained in a magnetic confinement system. As the amplitude
of the perturbations grows, saturation may set in. A nonlinearity found in Ref. 1
causes unstable perturbations to convert into an array of solitons: localized vortices of
plasma flow across the magnetic field. The vortices move at an arbitrary velocity.
Vortices with a small characteristic dimension @, which do not perturb the magnetic
field, were studied. It was believed that when a was large the shear would perturb the
magnetic field, thereby increasing the energy of the vortices. Large vortices therefore
appeared unfavorable from the energy standpoint. In the present letter we use the two-
fluid approximation to show that this is not the case for vortices which are frozen in
the electrons.

Following Ref. 2, we simplify the equations describing the flute waves. We make
use of the circumstance that the characteristic frequency is small in comparison with
wpg; (the ion cyclotron frequency) and that the ion Larmor radius 7p; is small in com-
parison with @, which is in turn much smaller than the characteristic longitudinal
dimension. Under these conditions we can restrict the analysis to a small neighbor-
hood of the magnetic surface of interest (ordinarily a resonant surface), on which the
magnetic field is B,. Assuming a/R and ak, to be small (1/R = — dIn B,/dx + 1/R,,
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where R, is the radius of curvature of By, and «, is the characteristic dimension for the
change in the electron pressure), we find, in the local approximation, two-dimensional
equations in the x, y plane, which is perpendicular to B, and whose y axis lies on the
magnetic surface. The current continuity equation divj = 0 becomes

podAxjds + 5y div {p,,Tx } #R™ dpfoy = { ¥, &Y } [ 4

(1)
¢
x=i; {p,x}= P X gp_a_x; 4.2, (X, .-}

B, ox 9y dy ox dt ot
Here ¢ is the electric potential; p =p; + p,; p;. are the ion and electron pressures; p,
is the constant part of the plasma density; and 1 is the transverse magnetic flux, which
is equal to the z component of the vector potential. According to Ref. 2, the other
components can be ignored. The flux ¥ describes both the perturbed magnetic field
and the unperturbed field, which produces the shear. The right side of (1) is propor-
tional to the divergence of the longitudinal current j;. Assuming that the ion compo-
nent of j, is much smaller than the electron component, we write equations for the
pressure as follows:

dp,/dt =0; dp,fdt={¥, AV} Poe/ Powp; 4m, 2)

where p,, is the constant part of the electron pressure. From the equation of motion
for electrons along the magnetic field we find

dayjdt={p, V¥ } | po wg;. (3)

We have thus derived the two-dimensional system of equations (1}~(3) in the two-fluid
approximation. This system of equations agrees with the three-dimensional equations
of Ref. 3, aside from the second term in (1), which we believe is written more correctly
in the form derived in Ref. 4, so that energy is conserved. We seek a localized steady-
state solution of system (2), (3). As in Ref. 1, we assume that this solution is traveling
along the y axis at a velocity ». Under the locality conditions, u is an eigenvalue of the
solution

p;=poi[l+ k; (x = X, )15 x=x(x, y — ut); (4)
Py= D,y L1+ K, (x—x/u)l; u=u,; (5)
lP:l//(x/; ui,e= i’c’c.i’eTOi,e/eBoy (6)

and 1 is an arbitrary function of x. The magnetic field which produces the shear is
directed along the y axis and is B, = dy/dx, B,(0) = 0. This field is not perturbed,
because solution (4)—(6) is frozen in the electrons (is traveling at the electron drift
velocity u,). Substituting (4)—{(6) into (1), we find from the latter

Ax —wmx(ue—ul.)/ueR=F[x—(ue—ui)x], (7)

where F is an arbitrary function.

Equation (7) is solved by the method of Refs. 1, 5, and 6. We introduce a circle of
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radius a. Choosing F to be different linear functions inside and outside this circle, we
find

X = bOJO + lel x/r + bzx,' r< a,

(8)
X=b3K0+b4K1x/r,' r>a; r2=x2+(y-—ut)2.

Here J,, are Bessel functions of argument & ‘7, and K ,; are modified Hankel functions
of argument k "r, which fall off as exp( — k "7); k " = (wg;/u, R )/% The constants b,—b,
and k' are determined by requiring that F be single-valued and that y and Vy be
continuous at r = a. The constants a and b, are left arbitrary. If b,#0, the vorticity
Ay is discontinuous at » = a; this discontinuity is permissible. We find that the electric
field is independent of the time in a coordinate system moving at the velocity »,. There
is thus no Landau damping (a resonant interaction of the vortex with the electrons).

When a flute-dissipative instability acts to replenish these vortices, they will evi-
dently fill the entire unstable region. A clear picture of a vortex turbulence of this type
was found in Ref. 7 in experiments with a rotating shallow pool of water. The flute
vortices are similar to the vortices of electrostatic drift waves with® VT, = 0, except
that for the latter the phase velocity along z is much lower than the electron thermal
velocity or the Alfvén velocity, and the condition u/u, > 1 also holds. Under the
condition VT, #0, however, this similarity is disrupted.® Another distinction is that
the flute vortices can occur because of the condition R < «, while the drift vortices
can occur because of the condition u > u,.
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