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The thermodynamic properties of localized spins in disordered conductors are
analyzed. The magnetic susceptibility has orbital components which do not
contain small terms of order { pp/ /#)~! < 1. Nontrivial contributions to the heat
capacity arise in only third order in the coupling constant, in contrast with the
situation in the ordinary Kondo problem.

The exchange interaction of conduction electrons with magnetic impurities has
several qualitative consequences for the dependence of the kinetic and thermodynamic
properties on the temperature and the magnetic field. This circumstance was first
pointed out by Kondo, who showed that a correction to the conductivity which de-
pends logarithmically on the temperature arises in third-order perturbation theory.
Just recently, the Kondo problem has been solved exactly.!

In a disordered system, the weak localization effects increase the probability for
an electron to return and to interact with a magnetic impurity. The diffusive nature of
the electron motion increases the interaction time. As a consequence of these effects,
the Kondo logarithmic singularities are accompanied by some stronger singular cor-
rections to the kinetic and thermodynamic quantities.

The Kondo problem in a disordered two-dimensional system was analyzed in
Refs. 2 and 3. It was found that a doubly logarithmic temperature dependence arises in
the spin susceptibility in second-order perturbation theory.

In the present letter we examine the orbital contributions to the magnetic suscep-
tibility. These effects are remarkable in that they are not small quantities on the order
of the parameter (pr!)~ ' <1 (/ = vp7 is the mean free path, pr = m*v,. is the Fermi
momentum, and #=1). The physical reason why there is no small parameter here is

444 0021-3640/84/080444-04$01.00 © 1984 American Institute of Physics 444



that the probability for an electron to return to the position of the magnetic impurity is
highly sensitive to the magnetic field. In this sense, these contributions are analogous
to the corrections to the magnetic susceptibility which result from the interaction of
electrons in a Cooper channel.*?

All the results below refer to the region 77 '> T'>max{ Tk, 75 '}, if the ex-
change interaction of the electron with the magnetic impurity has the antiferromagnet-
ic sign, J <0; here T = exexp{1/2J } is the Kondo temperature, and 7 is the charac-
teristic time for the electron spin relaxation in scattering by magnetic impurities.
When the exchange interaction has the ferromagnetic sign, J>0, we would have
Ty 2 €, and we would be dealing with the region 7~ '> T>rg |

In the three-dimensional case the orbital contribution to the magnetic susceptibil-
ity (per impurity spin S} is

21r 3 11’
V(= )1n3( TT) (1)

where vy, = (gt )ZS (S + 1)/3T is the magnetic susceptibility of the free spin, and £ (x) is
the Riemann zeta function.

In a film of thickness a <D /T (D = vl /3 is the electron diffusion coefficient),
with the magnetic field directed normal to the film, we would have

- m 2 2n% 1 -3 .
ox =~ XO(E‘_') T;—m (T¢/T) {2)

In addition to (1) and (2} there are always the ordinary logarithmic corrections to
the magnetic susceptibility, Ay ~y ln~ Tk /T).
The heat capacity presents an interesting situation: In a disordered conductor, a

correction to the heat capacity arises even in third order in the coupling constant,
while it does not appear until fourth order in the pure case.
For a three-dimensional sample the correction to the heat capacity per magnetic
impurity is
5C= 3 (S+D ¢ 3/2) \/5 3)
V2rvD? 2 03T, /T)

Here v = (m*p)/2m is the state density at the Fermi level.

In a film we would have

45 (S+1
5c-———D( ) I3 (TK/T) (4)

av

In a dirty conductor the effect described by expressions (3} and (4) can make a definite
contribution to the heat capacity at all temperatures above T .

To demonstrate the derivation of these expressions, we note that the Hamiltonian
of the exchange interaction is

e LA (5)
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FIG. L.

where the operators S represent the impurity spin, ;aﬁ are the Pauli matrices, and the
operators ¢, and ¥, create and annihilate an electron with a spin projection & and 3.

Figure 1a shows the Cooper correction 6@ (T,H ), while Fig. 1b shows the diffu-
sion correction 6@, (7") to the thermodynamic potential. The wavy lines correspond to
the spin propagator

<TS811)SH(r2) S/(rs) >

wiwaws'

We note that the diffusion which appears in the expression for the thermodynam-
ic potential describes fluctuations of the electron spin density which decay because of
the scattering of electrons by the same magnetic impurities.® The spin-spin scattering
also suppresses the Cooper contribution to the thermodynamic potential. Nontrivial
corrections arise under the condition 7rg > 1, under which we can ignore the spin
damping of the diffusion and of the cooperon.

A direct calculation yields

80=50,(T)+50T, H),

6
8@p(T)=8%(T, H=0). )

It is sufficient to calculate the Cooper contribution 6@ (T,H ). A cooperon in a
magnetic field is described by’

C=[Dq? +wyin+ ;—)+ o, 117 (7)

where w,, =2mmT, wy = (4DeH )/c, and ¢, is the momentum component along the
magnetic field.

Using (7), we find (d is the dimensionality of the sample)
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-1

ARS(S+1)

d-2
Wy Zj‘dqz 1
8¢, (T, H)= — o —= %) .
¢ 3-d D 27 24 (nt 1)+ w
- W, >0 n=o Da; +ey( /2) m

(8)
Carrying out the summation in (8), and focusing on the region of low frequencies and
small momenta, we find

PSES+Dw, T %2 wy
8@, (T, H)= - R (—2‘5) gzﬂ_(?{r*)’ (%)
2
where
T g
" : (10
8,(*) {) (' —1)shxt
The integral in (10) converges if 1> 1, and the quantity g, (x) at u = —1/2 and O is

understood in the sense of an analytic continuation along p.

Expression (9} has been derived in third order in J; in general, we would have to
use the substitution J—>(2InT /T)™ L.

Results (1)-(4) can be found from (6) and (9) by differentiating with respect to the
magnetic field and the temperature.

We wish to thank B. L. Al'tshuler for a useful discussion.
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