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Quantum spin fluctuations can induce phase transitions in Heisenberg magnets
with competing exchange interactions. Quantum effects can lead to the formation
of a specific metamagnetic state and long-lived induced magnetization in such
magnets.

First-order magnetic phase transitions are usually attributed either to non-Hei-
senberg exchange (spin-lattice interaction reduces to it; see, for example, Ref. 1) or
critical fluctuations, which transform the order-disorder transition in crystals of cer-
tain symmetry into a jump-like transition.”? In this paper we propose a new mechanism
for magnetic field-order phase transitions which should operate in Heisenberg magnets
near the boundaries of magnetic phases. In contrast to the mechanisms indicated
above, this mechanism is based on the quantum nature of spins and, therefore, it
cannot occur in magnets with classically large spins. The same physics leading to such
phase transitions also leads to the existence of metamagnetism of a specifically quan-
tum nature. It differs from the usual metamagnetism by the fact that, first of all, it is
caused by isotropic Heisenberg exchange, rather than by magnetic anisotropy, and
second, quantum metamagnetism is characterized by the presence of magnetic mem-
ory in the crystals: at low temperatures the crystal can remain in the magnetized state
even after the external magnetic field is removed.

We are examining crystals in which the magnetic ordering changes from ferro-
magnetic (FM) to antiferromagnetic (AF) ordering as the parameters of the competing
exchange interactions change. It is assumed, for simplicity, that the magnetic atoms
form a simple cubic lattice and that the exchange integral I; between nearest neighbors
is positive, whereas the exchange integral I, between the second nearest neighbors is
negative. The Fourier components of the exchange integral are given by
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where k is a reciprocal lattice vector, and i =x, y, z.

The standard procedure for finding the ordering at 7= 0 consists of replacing the
spin operators in the Heisenberg Hamiltonian by classical vectors and looking for a
vector k that minimizes the energy produced in this manner. The condition of mini-
mum energy will then be equivalent to the condition of maximum J, with the same k.
The theory of phase transitions also leads to the same criterion for the magnetic
ordering: In the paramagnetic region, as the temperature is reduced, fluctuations with
k for which 7, is maximum grow most strongly, and a long-range order with this k is
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established at the critical point. Correspondingly, according to (1), FM ordering
should be realized for small /, and /, = 0.5 is the boundary between FM and a layered
AF phase with k = (0,0,7) = P.

However, if the quantum nature of the spins is taken into account, then the
investigation of low-temperature and critical properties leads to different positions of
the boundaries between the phases. In contrast to the FM state, the classical AF state
is not a characteristic state of the Heisenberg Hamiltonian. For this reason, the true
energy of the antiferromagnet E ,r is lower than its classical energy by an amount
~1/zS, where S is the spin, and z is the number of nearest neighbors:
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Correspondingly, at the classical boundary of phases /. = 0.5, where I, = I, E sr is
lower by the same amount than the energy of the FM state E gy . For this reason, the
quantum value /,, which bounds the region of stability of the FM phase, must also be
less than /. by an amount ~ 1/zS.

However, the zero-point oscillations of the spins, which lower the energy of the
AF state relative to the energy of the FM state, are the strongest oscillations at 7= 0.
As the temperature is increased, their relative contribution to the thermodynamic
quantities must decrease, because the degree of antiparallel orientation of spins from
different sublattices decreases. For this reason, the quantum corrections to the crite-
rion, according to which a structure with maximum 7, must be established in 7, must
also be small. In the relatively rough molecular-field approximation, as is evident from
the expression for the susceptibility, we would have

X ~E3r-1I.S (S+11 (3)

In spite of the fact that the quantum nature of the spins is taken into account, such
quantum corrections are missing in the criterion under discussion. In contrast to the
energy (2), according to {3), the spin enters into both T, for FM and into Ty for AF in
the same manner: in the form of the combination S (S + 1). The smallness of correc-
tions to the classical criterion is also indicated by the most accurate results of the high-
temperature expansions®: 7. for FM includes the spin in the form of the combination
[S(S + 1) — 0.09], i.e., in essentially the same way as in the molecular-field approxima-
tion.

Thus, although in the interval /, </ <., above T, FM short-range order develops
most intensively as the temperature is reduced, it cannot exist at 7"=0, since
Eg,y > E . However, the AF state is also classically unstable in this interval. For this
reason, there arises the question of whether it would be stable when quantum effects
are taken into account. To answer this question it is necessary to calculate the magnon
frequencies w, in the second order with respect to 1/S. Separating the cubic terms in
the magnon Hamiltonian into products of pairs of operators and their averages over
the ground state and performing a Bogolyubov (u,v) transformation, we obtain
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As follows from (4), the AF state, at least, is also stable relative to small fluctuations
for [ <1, since the frequencies remain real up to /, = 0.5 — (0.14/S). It is highly un-
likely that some other state would have a lower energy than the AF state at the
boundary between the AF and FM phases. For this reason, it is natural to conclude
that in the classically forbidden interval from /, to /. a specifically quantum AF
ordering should be realized. For small spins this interval is quite wide: It is comparable
to the interval of stability of the FM phase.

The fact that in this interval short-range order in the paramagnetic region is of a
different type than long-range order at 7=0 (FM in the first case and AF in the
second) requires that the type of magnetic order change in a jump-like manner. There
are two possibilities. 1) As the temperature is reduced, at first there is a second-order
phase transition from the paramagnetic state to the FM state, which is accompanied
by a first-order phase transition from the FM to the AF state. 2) There is a first-order
phase transition from the paramagnetic state to the antiferromagnetic state, i.e., the
phase transition is of a “order-foreign disorder” type. Thus far we have proved the
possibility of such phase transitions only in non-Heisenberg magnets.’

It is important that in the interval /, </ <. FM ordering corresponds to a local
minimum of the energy. This follows from the fact that the magnon frequencies
@y = I, — I, according to (1), are non-negative in this interval. This follows from the
fact that the external magnetic field must give rise to a jump-like transition from the
AF state to the FM state and, in addition, the magnitude of the field required for this
transition decreases as / approaches /,. If the field is removed, then as T— 0 the
crystal must remain for an arbitrarily long time in the metastable FM state. Isotropic
metamagnets, in principle, are also possible with Heisenberg exchange (1), but they do
not have a magnetic memory.

As regards the experimental observation of quantum first-order phase transitions,
they should be sought in AF with small spins and with strong FM exchange which
competes with the AF exchange. The fact that they compete strongly is indicated by
the large shift in the paramagnetic Curie temperature @ from ( — 7 ) toward positive
values. For many AF, @ is even positive. Among magnets with small spins, such
materials include, for example, CoCl,, CuCl, . 2H,0, NiBr,, MnF;, UP, UP,, and
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others. It is also possible to approach the boundary between the AF and FM phases by
applying a pressure to the crystals.

The author is grateful to V. L. Pokrovskii for discussions.
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