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It is shown that when superfluid “He flows along a capillary with a velocity
exceeding Landau’s critical roton velocity, a one-dimensional periodic structure,
which is at rest relative to the walls, appears in the helium and the spectrum of
excitations is deformed so that the criterion of superfluidity is not violated.

Landau’s criterion plays an important role in the modern theory of superfluidity.
According to this criterion, superfluid motion is possible if

€(p) = e(p)+pv>0 (1)

along the entire curve of the spectrum ¢( p) of elementary excitations.' (We are examin-
ing motion in a laboratory system of coordinates, in which the walls of the vessel and
the normal part of the liquid are at rest.) For the actual spectrum of “He (curve 1 in
Fig. 1) this leads to the condition

v<u,, @

where v, is equal to the tangent of the slope angle of the tangent to the roton part of
the spectrum (v, ~60 m/s). The question of what happens to the liquid when this
velocity is exceeded, as far as we know, remains unclear. We shall show that for small
excesses above the critical velocity v,, a one-dimensional periodic structure, which is
at rest relative to the walls, appears in the helium with a wave vector oriented opposite
the flow and equal to p. /%, where p. ~p, is the momentum at the tangent point. In
this case the spectrum of excitations is deformed so that criterion (1) is nowhere violat-
ed.

The above formulation of the problem requires some important stipulations. As is
well known, thus far it has not been possible to attain the critical velocity (2). The
reason lies in the creation of excitations of another type—vortical rings. The maximum
velocities—about 8-10 m/s—were obtained with helium flowing through a small
opening with a diameter of 5-20 um.>* It appears that an improvement of the experi-
mental technique will permit achieving higher velocities, exceeding (2). The author
hopes that this paper will stimulate further investigations in this direction.

The quantity € defined by Eq. (1) is the energy of excitation in the liquid moving
with velocity v. Inequalities (1) or (2) ensure that € is positive. If € becomes negative,
then an unlimited creation of boson excitations—rotons—becomes energetically favor-
able. Here the boson distribution function n(€) becomes negative, indicating the impos-
sibility of thermodynamic equilibrium of the ideal gas of rotons.

The following arguments are easier to understand if a graph of € as a function of
Dy is constructed [the x axis is oriented along ( — v)]. Curve 2 in Fig. 1 corresponds to
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values v <v,, curve 3 corresponds to values v = v, and curve 4 corresponds to values
v>v,. The similarity of the behavior of € to the behavior of the frequency of the “soft
mode” near the second-order phase-transition point is evident. We believe that this
analogy has a deep significance: at v = v, the helium undergoes a second-order phase
transition from a spatially homogeneous state to a layered state. At v = v, the distribu-
tion function becomes infinite at the point p = p, (the vector p, is oriented along the x
axis, x, |p.| =p.). The density of the superfluid part, however, remains finite. A
simple calculation gives
3/2
_‘_)LM 0 85_ ﬁ_. T_ (T,,IQ:“Z (3)
P AT # p

{4, po, u are the parameters of the roton spectrum). [In calculating (3) it is, of course,
necessary to use a Bose, and not a Boltzman, distribution function for the rotons.]

We shall write out the Hamiltonian of the roton gas, corresponding to the energy
(1), in the form f ¢[6( P+ pv]:/zd 3x, where ¢ ¥ is a roton operator, and p is an
operator acting on 2. Since for v > v, equilibrium in the gas of noninteracting rotons is
impossible, the interaction between them must be taken into account. It is sufficient to
take the interaction operator in the form ( g/2)f ¢+¢+¢¢d x. In what follows, the sign
of the constant g is important. Experimental data on neutron scattering in helium
apparently indicate that g>0, g~2X 107 erg-cm>* The final form of the energy
operator of the system is

A

A A AA
A= f{tll [efp)+PV]¢+ AR ARV BN e (4)

Terms that are cubic in ¢ should not be written out in (4). They describe three-
roton processes, in which at least one roton has a momentum which is not close to p,,
and only the interaction of “critical” rotons is important.

When the critical velocity v, is reached, creation of rotons with momentum p,
and their accumulation in this state begins.” However, ¥, an operator of the system in
which there is a large number of bosons in a single state, can be viewed simply as a
classical function of the coordinates.” We shall seck it in the form of a plane wave

Yo =nexp (ip, t/h), (5)

determining the amplitude 7 from the condition that energy (4) is minimized. Taking
into account the fact that €(p.) =p.v., we write (4) in a form analogous to the free
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FIG. 2.

energy of the usual theory of second-order phase transitions,
4
y[pc (v, -v)in P+ ;ln P1d%x. (6)

Minimizing (6), we find |5|* = (v — v, )p. /g for v>v.. The plane wave (5) corresponds
to a spatially uniform distribution of rotons. It is remarkable, however, that it leads to
a spatial modulation of the density of the liquid, since the density operator # contains a
term which is linear in the operator #:

Rne + g (A0 + ARG, ™

This term is responsible for the creation of a roton with scattering of a neutron in
helium and the coefficient 4 determines the probability of this process. The corre-
sponding contribution to the dynamic form factor of the liquid is |4 |*5[e — €( p)]. A
reasonable estimate of 4 can be obtained assuming that this term is the main contribu-
tion to the Placzek sum rule. We then find |4 |* = p2/2me(p.)=2.5.

Replacing ;Ab in (7) by the classical wave (5), we find that the density of helium is
modulated according to the law

1/2
n—ny_ [ (A I2(v—vc)pc

1/2

vV— U
sinp,x)~2.6 | ——=|  sin(px). (8
)
[4

no nof

The appearance of such a one-dimensional density wave is the main prediction of the
theory expounded here. It can be observed, in principle, in the experiments on scatter-
ing of x-rays in moving helium.

_The roton spectrum changes for v>v, . To find it we must substitute = Yo+ 1//
for ¢ in {4), retaining terms that are quadratic in ¢ The problem then actually coin-
cides with Bogolyubov’s problem for a nonideal Bose gas and the spectrum has the
form®

_ 2
e(p) = \/ zpc (U - v(_‘) eo(p) + [ €g (p)] 2.' Eo(p) = A+ (p 250) — va

e

)

We can see that the minimum value of € is zero, so that Landau’s criteria is nowhere
violated. The spectrum is anisotropic and the velocity of the excitations near the zero
of & is finite. The dependence of € on p, for (v —v.)/v, = 0.1 is shown in Fig. 2.
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The above picture of the phase transition with respect to the flow velocity is also
valid at finite temperatures. The similarity noted above between (6) and the free energy
in the theory of second-order phase transitions leads to the conclusion that the depen-
dence of the normal density on the velocity corresponds to the dependence of the
entropy on the temperature near the transition point. In the fluctuation region this
gives

p,®=p, @)+ B, - % (10)
where « is the critical index of the heat capacity.

The quantitative analysis presented above is based on the assumption that g > 0.
If, however, g <0, then the qualitative picture of the phenomenon remains unchanged.
As before, there will be some critical velocity above which a density wave appears in
the helium. The transition in this case, however, is a first-order phase transition.

The author thanks A. F. Andreev, V. L. Ginzburg, Ya. B. Zel’dovich, A. P.
Levanyuk, and E. M. Lifshitz for discussions of the questions considered in this paper.

UFollowing Ref. 6, the accumulation of rotons in a state with momentum p, can be Viewed as their Bose
condensation.
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