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The action of a d : I I supergravity is renormalization-invariant in up to seventh-
order perturbation theory because ofa topological term in this action. A
mechanism for the compactification M ' -(4D space) X S 7 is also discussed.

Cremmer et al.t proposed a theory for an.l[: l , d:l l  supergravity in 1978.

Their theory yields a high-symmetry ,Ay': 8 theory upon a dimensional reduction to

d : 4. There is the hope that realistic supersymmetry models can be obtained upon the
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spontaneous breaking ofthis theory. This theory is actually the only candidate for the
role of a unified field theory based on a simple supergravity. An alternative theory is a
conformal supergravity in d:4 which does not contain dimensional coupling con-
stants; it cannot be generalized to higher dimensionalities and cannot be treated by the
Kaluza-Klein approach.2

Gravity theories, supergravity theories, and othef field theories are not renormali-
zable in higher dimensionalities, so that at this point the only way we could allow the
existence of such theories would be to accept them as finite, i.e., to assume that there
are no quantum corrections to the original Lagrangian. The action of an n : l, d : ll
supergravity isr
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where l, is the elfbein field (or graviton freldl, V, is the gravitino field, and AMNP is a
third-rank antisymmetric tensor field. Together, these fields form a single supermulti-
plet of particles on the mass shell; Fur,*e:24olMu NPQI.Action (l) is invariant
under local supertransformations and Abelian gauge transformations of the field
A nqnpi

6Auup =  D12aAu4 =  E lu .o* r l  ,

A remarkable property of Lagrangian (1) is that it contains a Wess-Zumino termr)
{'.*,'F*,...*.Fr,..r,Ar,...r,,, which follows directly from the supersymmetry proper-
ties. The coefficients of the various terms in (1) are fixed by the local supersymmetry.
The only arbitrary parameter is the common factor which is determined by the
"Planckian mass" rno. We will now show that if there exists a quantization procedure
which preserves both symmetries of the a'ction, then (1) cannot be renormalized.

A correct method to calculate the loop corrections without introducing any ex-
traneous z factors is the external-field formalism. We write the Lagrangian as
L : L"" a Lou, and we wite 4, : Ei4._ * e\tr,, AnrNp : A*typ., t ar*"ou, etc. The
quantum Lagrangian Lou contains no terms linear in the quantum field ao" if the
external fields satisfy the equations of motion. Furthermore, /o, contains the external
field Arr" only in the form Fntxpe. The only term of a different .type,
e''"'t" fr,...*. fr, .r" A r"...r,,, can be rewritten in the form e...F fa
+ AM({ f..J...o...1; the term with the total derivative is zero in the quantum action,

since the quantum fields fall of rapidly at infinity. After an integration over the quan-
tum fields, we find from Zoo an expression which depends on only Fuxpe (not Ar*"1,
so that it is not possible to derive a contraterm of the type
{"'*"Fr,...r.F*,..r"Aro..r,, (finite or infinite). This result means that there are no

(21
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corrections to the Wess-Zumino term in any order of perturbation theory, since we
have nowhere used the quadratic approximation. Furthennore, there cannot be any
corrections to other terms of the Lagrangian in this case, because of the local super-
symmetry; we thus conclude that mo is not renormalizable. This conclusion also es-
sentially proves that there will be no new supersymmetry contraterms, but this point
requires further discussion. We know that there are no such contraterms in up to
seventh order in3 l/ml. lt has also been verified that the single-loop corrections are
finite in this theory3 ind that the anomalies cancel out.a We might note that our
arguments are reminiscent of Steele's proof5 that the Yang-Mills /{: 4 supersym-
metry theory is flnite. There the supersymmetry fixed the relative coefficients of the
various terms of the Lagrangian, and the chiral vertices of the S 3 type could not have
infinite renormalizations according to a superfield nonrenormalization theorem. Here
we use another fact: the nonrenonnalizability of the Wess-Zumino term (and not only
an infinite nonrenormalizability), because the external-field method explicitly realizes
all the symmetries of the Lagrangian and cannot give rise to contraterms with an
implicit symmetry.2)

We turn now to the reasons for the compactification of the I l-dimensional space-
time according to theory (l). A discussion of compactification usually involves finding
certain solutions of the equations of motion of the boson sector of the theory and
testing their stability with respect to small local perturbations. The results are
ADS4 XS 7 solutions, with loop corrections6 or fermion condensates; and Ma X^9 7 solu-
tion is also possible. In contrast with previous investigators, we wish to show here not
simply that there exists a self-consistent vacuum solution but also the inevitability or
at least the possibility of an evolution of the theory toward the formation of vacuum
condensates and a contraction of the dimensionality of the internal seven-dimensional
manifold. Although other attempts have been made along this line in model-based
theories (see Ref. 7, for example), we are analyzing a "true" d : ll supergravity here.
For the compactification in this case it is not necessary to deliberately introduce mat-
ter fields, since the theory unavoidably contains the antisymmetic field Ar*r. We will
describe two possible compactification mechanisms, of which the second appears to be
the more plausible.

Under the assumption that there are no fermion colrdensates, the classical equa-
tions for the boson sector of the theory (l) are

Ruru- 
l tr*R--- * $FMpoRFfroR- sutrFren;nroRs; ' (3)

(4)vMF* ,NPQ 
^&* .NPQMt" 'M '  

F* , . . . *oF* r . . . * , '

The possibility of a compactification stems from the existence of solutions of Eq. (4)

(Ref. 8):
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F^ roo  =  ) t  e^n ro r r ,  s ' s l

Here )" is an arbitrary numerical constant, ̂S. is the twisting on S 7 corresponding to
the connectedness of an absolute parallelism, Rio,V + ^t) : O, and,f : + 2J2/rr.The
last equation is a condition for the existence of the Englert topologically nontrivial
solution (6) on an 57 sphere with the radius rr. In the static case, the determinant g7
does not depend on the time, so that we could write/: const in (5); this would not be
true in a dynamic analysis. We assume that the mixed components of the vacuum
condensate FuNpe are null components in terms of Lorentz invariance. We can deter-
mine the curvature tensors R, and R^n in terms of the vacuum values of the fields
Fr,ro and F^non by working from (3). Substituting the results into action (l), we find
S : ld'x,[e 1n7;�72. In principle, it would be possible to obtain a "dynamic" termiz
in the action. The seven-dimensional curvature contains time derivatives of the radius
rj, tnot simply a static part l/(rrl2..We now use the topological condition/- l/rr. The
Lagrangian, which becomes L:f' +f2 (with a plus sign!), describes an instability: a
motion of a one-dimensional particle in a potential V(f): -.f'.In other words, we
conclude that/unavoidably increases, and r, decreases, over time.

A second compactification mechanism arises in a more systematic analysis of
Eqs. (3). We now assume that there are no Englert fields; i.e., F^,pq-}. In this case
the condition f-l/r, drops out, and the metric is factorized into a four-dimensional
metric and a seven-dimensional metric, with all components possibly dependent on the
time. Equations (3)then have solutions of the following type, at least at large values of
rr, in the beginning of the compactification:

ds2 :  dt2 -  a2(t)g*axadxF - b2(t)g^ndxmdxn: a,p =1, 2, 3,

m,  n  =  1 r  . . . ' 1  ,

where a(r ) and b (t ) are determined by diferent "cosmological terms," * (8/3)f2 and
- (7 n) f 

'� . Correspondingly, the four-dimensional part of the metric describes ADS4,
i.e., a solution with an oscillating scale factor, while the seven-dimensional metric
corresponds to a swelling or shrinking sphere. In the latter case, we obtain a compacti-
fication of the internal dimensions. Significantly, this compactification occurs under
completely plausible initial conditions; we are actually assuming that the antisymme-
tric fields Ar*, received some "initial kick" f-A*0. In contrast with the four-dimen-
sional Ar"o, the seven-dimensional A^no do not affect the Einstein equations at the
beginning of the compactification, so that A^,0 enters (3) divided by the radius of a
seven-dimensional sphere, which is large at the outsett F^non-A^,0/r7. The mixed
fields Au,^, ..., the evolution of the gauge fields included in the metric components
grn, and other questions will be discussed in a detailed paper.

We wish to thank A. I. Vainshtein, N. A. Voronov, Y. L Zakharov, V. A. Novi-
kov, L. B. Okun', K. A. Ter-Martirosyan, and M. A. Shifman for interest in this study
and for useful discussions.

I)By "Wess-Zumino term" we mean an expression which changes upon gauge transformations to a total
derivative (an expression which is implicitly invariant).
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2)We recall that the external-field method usually (as in the present case) performs an infrared regularization

of the theory.
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