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The equilibrium form of He* crystals does not exhibit critical behavior, as
predicted by the existing theory of two-dimensional phase transitions.

The notion of a phase transition of the surface of a crystal from an atomically
rough to an atomically smooth state was introduced by Burton and Cabrera.! Such a
transition is manifested microscopically as the appearance of a smooth, equilibrium
section of the surface at < T, determined by the crystallographic orientation. A large
number of theoretical studies concerning faceting phase transitions have appeared,
especially in recent years®S; however, systematic experimental studies of this pheno-
menon have thus far not been performed.

A helium crystal, whose equilibrium form is characteristically established over
very short times due to the large amplitude of zero-point vibrations, is the most con-
venient object for making quantitative studies of faceting transitions. At present, three
such transitions in the hcp phase of He* are known™: 1) on the surface oriented
parallel to the basal plane (0001), T, ; = 1.2 K; 2) on the family of faces parallel to the ¢
axis {1010} (or {1120}), 7., = 0.9 K; and 3) on the family of faces {1011} (or, corre-
spondingly, {1152}), T.;=0.36 K. In this letter we are analyzing the equilibrium
form of helium crystals near transitions 1 and 2.

The apparatus used for the measurements and the method for growing the crys-
tals with the required orientation are similar to those used previously.® The changes
concerned only the construction of the experimental cell, which in this case consisted
of a cylindrical container 25 mm long with an inside diameter of 15 mm. The axis of
the cylinder was oriented horizontally, and the flat glass windows in the bases of the
cylinder remainded open in order to observe the entire volume of the cylinder; the flat
copper bottom (25 mm long and 8 mm wide) formed a thermal contact between the
container and an He® bath. An electronic stablizer'® made it possible to vary the
temperature of the container to a fixed law or to maintain the temperature constant to
within 10™* K.

In equilibrium, this crystal fills the required part of the container and its surface
forms a convex meniscus. The crystals are 25 mm long ( y axis), 10-14 mm wide (x
axis), and 2.5-5 mm high (z axis). With this geometry, the curvature of the meniscus in
the longitudinal direction is much smaller than in the transverse direction (the capil-
lary constant ~1 mm), and the profile of the surface is described with sufficient
accuracy by the one-dimensional equation of equilibrium, so that for small values of z_,

az! = Apgz, (1)
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where @ = a + (Pa/dz?) is the rigidity of the surface, 4p is the difference between the
densities of the crystal and of the liquid, and g is the acceleration of gravity. The slope
angles of the particular facet investigated [i.e., for example, the (0001) face in the case
of transition 1] to the horizontal ¢, and @,, were measured to within 1 X 1073 rad.
For the ten crystals investigated the angle ¢,, did not exceed 5X 107> rad, and the
angle @,, was chosen in the range from O to 1.3 X 10~ rad. Equation (1) can be used
to determine & as a function of temperature and of the angular variable ¢ =z’ — @,,, .

The profile of the surface z(x) was measured with the help of a narrow He-Ne
laser beam incident on the surface under investigation at a small angle (3-5°). The
deflection angle [in the (x,y) plane] @ of the reflected beam was measured as a function
of x (Fig. 1); in this manner the derivative z'(x), taken along the extremal section of the
surface, was measured directly, i.e., at z, = 0. The width of the beam (~ 0.3 mm) was
chosen so as to minimize the total angular broadening of the reflected beam (due to the
curvature of the surface as well as diffraction). When a flat section is present on the
surface, its size along the y axis could be measured, as done previously in Ref. 8, by the
diffraction method.

Typical experimental curves are shown in Fig. 1. Curve 1 corresponds to T'> T,
when the surface is completely curved; curves 2 and 3 correspond to 7< 7, and, in
this case, the surface contains a flat section (the region where @ = 0), whose size
decreases continuously to 0 if 7—T7,. At a fixed temperature the angle ¢ on the
boundary of the flat and curved sections varies continuously, i.e., there are no edges on
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FIG. 1. Typical experimental dependences @(x): 1-@®—~T=1199 K; 2— - T=1194 K;
3 — O — T=1.88 K. The inset shows the path of the rays with reflection from the surface of the crystal.
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FIG. 2. Example of an analysis of the measurements: O-r=1212 K, X —-T=1223K,0—-T=1.193
K. The solid curves correspond to dependences of the form ¢ = (z,/a}sinh[(x — x,/a)] with ¢ = 1.06 mm.

the surface. This indicates that the observed transition is not a first-order transi-
tion>'"12; for comparison, Fig. 1 shows a solid curve calculated for a first-order transi-
tion acccording to Ref. 12 (for a flat, 4-mm-long section).

The results of the measurements of the surface rigidity & for transition 1 reduce to
the following. At 7'> T, , the experimental curves for all of the samples investigated
can be described by the relation z;, = (zy/a) sinh[(x — x,)/a], which follows from Eq.
(1), if & = const, with the same value of the capillary constant ¢ = 1.10 4+ 0.04 mm,
independent of temperature (in the interval from 7', ; to 1.30 K) and independent of the
angle @, . In this case the values of z, vary from sample to sample approximately by
an order of magnitude. At temperatures below 7, (0.01-0.02 K), when the size of the
flat section is still not too large, the branches of the experimental curves corresponding
to the curved sections are described by the same relations with the same value of a (see
Fig. 2). Thus, everywhere in the vicinity of transition 1 (with 0 <@ S0.1 rad), @ is a
constant equal to @ = Apga® = 0.21 + 0.015 erg/cm?. This result disagrees with both
the predictions of the mean-field theory,” according to which & increases indefinitely
near the transition, and the predictions of the exactly solvable microscopic models of
the surface,>® according to which @—0 at T< T, and ¢—0. The value of & is also at
variance with the universal relation &(T—T., ¢ = 0) = (7/2)(kT./d %), where d is the
distance between planes for the given face, as proposed by a number of authors.*>

Analogous, although less complete, data were obtained for transition 2. The prob-
lem is that in this case the symmetry of the special face is lower than for transition 1
and the quantity & can depend strongly on the angle between the x and ¢ axis of the
crystal. For the samples that we investigated this angle varied in the range 70-85 and
the measured values of the capillary constant were approximately equal to 1.2 mm. It
is significant that, as with transition 1, the flat section arises directly from the convex
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surface without an intermediate (cylindrical) stage, whose existence is predicted by the
mean-field theory.?

Our attempt to observe the faceting transitions in He® crystals was unsuccessful.
We established that down to a temperature of 0.32 K, which corresponds to a mini-
mum on the melting curve, where the most favorable situation for observing the equi-
librium form of He?® crystals is realized, the faceting phase transitions do not occur.

We thank A. F. Andreev, V. I. Marchenko, and A. I. Shal’'nikov for many useful
discussions.
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