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The most symmetric superconducting phases in cubic crystals are found. Some of
their thermodynamic and magnetic properties are discussed.

The compound UBe,;, which goes superconducting at 7, = 0.85 K, exhibits sev-
eral exotic properties." Above 100 K its spin susceptibility obeys a Curie law, becom-
ing independent of the temperature only at T~ 10 K. The state density extracted
from this behavior and from data on the electron specific heat corresponds to an
effective mass m*~200m,. A similar inference comes from the anomalously high
critical fields [more precisely, (dH, /dT); = — 257 kOe/K; Ref. 1]. It has therefore
been suggested that for this compound [and also CeCu,Si, (Ref. 2) and UgFe (Ref. 3)] it
would be better to speak in terms of a Fermi liquid of heavy fermions {5/ electrons)
with a degeneracy temperature T ~ 10 K. Correspondingly, we would expect that the
superconducting pairing would not be of a phonon nature but would instead result
from magnetic mechanisms (the exchange of paramagnons) and would correspond to a
triplet pairing. More briefly, it is expected that in these compounds the superconduc-
tivity might in many respects be more reminiscent of the superfluidity in *He than the
ordinary Bardeen-Cooper-Schrieffer superconductivity. Recent measurements® of the
electron specific heat of UBe;; below T, have shown that its low-temperature behavior
corresponds to C,, ~yT (T’ /T.)?, instead of the exponential dependence exp(— 4 /T)
for BCS superconductivity with a gap. Such a dependence is characteristic of *He-4,
where the gap in the quasiparticle spectrum varies along the Fermi surface, vanishing
at two points on this surface.
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Nevertheless, a direct analogy with the superfluid phases of *He (in particular, the
triplet pairing mechanism) does not follow from these results. The primary distinction
between a superconductor and *He stems from its discrete crystal symmetry. For
example, the compound UBe,; belongs to the cubic group.” In the present paper we
are basically listing the types of superconducting states (the superconducting symme-
try cases) which are possible for cubic crystals. According to Ott ez al.,* the UBe,,
ground state differs from the ordinary type, but these results do not rule out the
possibility of a singlet pairing. We will also briefly mention certain phenomena which
might help resolve the question.

To list the substantially different symmetry classes for an equilibrium supercon-
ducting state is only slightly more complicated than to construct the magnetic classes.®
This assertion also applies to the case of triplet pairing, provided that the spin-orbit
effects are sufficiently strong (i.e., provided that rotations of the lattice simultaneously
rotate the spins pinned to it). Treating the singlet and triplet states separately, we can
split off an inversion transformation. The complete group whose discrete subgroups
are to be found contains the spatial rotation group O, time reversal R, and Abelian
gauge-rotation group U(1). In order to construct expanded subgroups [whose elements
contain transformations from O in combination with elements from U(1) and R] we
need to construct factor groups on one of the invariant subgroups (there are two in O:
D,=V and T). From the elements (™3, ¢*™3) or (€™, e™,e ~™/?), and an element
of R we in turn construct a group which is isomorphic to the factor group. Invariant
combinations can be constructed on any basis of representations of the group O whose
characters are the same as those for the factor group.

The superconducting order parameter is’
Ay = ¥ (K)is, (S =0);
Alk) i(&d(k))éy (§=1).

The coordinate part [¢(k) and d(k)] is correspondingly either even or odd under the
replacement k— — k. Table I lists only those superconducting phases in a crystal of
group O, (UBe,;) which have the highest symmetries (in the theory of the superflui-
dity of *He, these phases are called “inert”).

The superconducting class O X R has an analog either an ordinary superconduc-
tor (S'=0) or the B phase of *He (S = 1). In other cases the rotation elements are
linked up with elements of the gauge group (this is a violation of relative gauge-
rotation invariance). As a result, at the points at which the Fermi surface intersects
certain axes, or on lines where this surface intersects certain symmetry planes, the
superconducting gap in the excitation spectrum vanishes [if this condition is written as
detd (k) = 0, it would correspond in the case S = 1 to d*(k) = 0]. The behavior C,, « T3
in UBe,; (Ref. 4) is satisfied by four phases: a singlet phase O(D,) and three triplet
phases : O(D,), O(T) X R, and D,(E).

_Let us assume® detd (k) = ]detZ (k)|exp(ip(k)). Near a point where we have
detd (k) = 0, either the condition (k) = 0 holds [e.g., O(T") X R ], or the phase ¢(k) ac-
quires an increment of 27V when this point is circumvented (a boojum). In the 4 phase
of *He, this singularity is associated with an orbital angular momentum. In a super-
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TABLE 1. The most symmetric superconducting phases in a cubic crystal

Super- Positions of zeros in spectral gap Magnetic Isotropic
ing D
conﬁ:scst Ing yregeneracy Type of order parameter moment analog
OxR Super-
x i None — conducting ~
(S=0) Y (k) = f(k) = f(~ k), real cubic function in § state |
|
B !
Ox R 1 ~ None IH
- _ ~ "~ —_ B o e
$=1) d= (xk, + Fk, + 7k )F0)
0( D, y} 2 8 intersections of Fermi surface with threefold axes
(5= 0) V= UG+ ke’ + ke ™R f (k)
o(D, ) , The same zeros a-phase
(5=1) d = @k, + Xk, e + 5k e” 2" f(k) ¥He,S= |
O(T)x R Lines where the Fermi surface intersects diagonal planes of the cube
1 . -~
= = (12 — ¥2VWE? _ K22 _ 32
(5 =0) V= 02— B - kKR~ K20
O(T)x R 1 Points at which the Fermi surface intersects fourfold axes
= = {5 2 3 ot -
(§=1) d = {xk, (K, — k7 )+ Tk, (k] - k3 ) + 2k, (K}, — K3, ) } £(K)
D,(E) 2 points at which the Fermi surface intersects a fourfold axis
6 Along AHd
~ . , i .
$s=1 d= {HZ(kx"'lky)"’bkz (;+1}’)")}f(k) fourfold axis
D4 (E) 6 At the same places and also at the intersection of the Fermi surface Along
with the perpendicular symmetry plane fourfold axis _
5=0) V= Kk, + ik,)FK)

Here X, p, Z are pnit vec_tors along the coordinates. Here the groups are O(T') = (E, 8C;, 3C,, 6C,e'™, 6C,e™);
D(E)=(E,Ce™, Ce™?, Cie~""?, U,.e™ R, UyR, 2Use*™?R}); O(D,) = (E3C,, 2C3R, 2C}'R,
2C4’Y€21ﬁ/3 R, 2Civle2m'/3R’ 2CieA2m'/3 R, ZC;le‘ 2mi/3 R, 4C3e_ 27i/3 s 4C§eZWi/3 )‘

conductor, it would correspond to an orbital magnetic moment (and also a spin mo-
ment in the triplet phase). It is easy to show that the corresponding moments in O(D,)
are ordered antiferromagnetically (along threefold axes) because of the cubic symme-
try. A slight uniaxial deformation, however, gives rise to a magnetic moment piezoe-
lectric magnetism).
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The question of the orbital angular momentum and its magnitude are most im-
portant for the D,(E ) (S = 1) phase, which is a superconductor with an orbital and spin
ferromagnetism. Even in the ground state, a current should flow along the surface of
the sample and cancel the field of the current inside it. (The field can be estimated to be
H~pgn~1 kOe.) A discrete (sixfold) degeneracy allows the formation of domain
structures which offset the loss of magnetic energy.

Let us assume that the spin-orbit interaction is nonvanishing but still weak
enough that the angle (6 ) through which the spins rotate around a fourfold axis could
vary over space. In this case the charging current would acquire an additional term®:

. > 2e -~
i=p, (Vo — —cA)+ p1V 8.

From this term we would expect a nontrivial flux-quantization condition:
@ = @g[N, + N,( p+/p;)]. Here we have p,/p, ~ 1, and this ratio is otherwise arbitrary.
The finite spin-orbit coupling determines how advantageous the formation of an addi-
tional spin structure will be. This structure might form, for example, around a vortex
associated with a change in @ upon a circumvention of 27 (N, = 1,2,...).

The magnitude of the spin-orbit coupling is also important for distinguishing the
singlet pairing from the triplet pairing in the most symmetric phase, O(D,). Spin de-
grees of freedom might be excited at frequencies smaller than the energy gap. We have
in mind the possibility that modes of this type would be related to the spin modes
(ferromagnetic or antiferromagnetic resonances) in magnetic materials. Spin oscilla-
tions associated with the rotation of the system of spins with respect to the lattice of
course exist in any phase with .S = 1. For a charged system, however, their description
requires appealing to a model.

We wish to thank V. P. Mineev for useful discussions.
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