Conductivity of metals and semiconductors
with defects with long- and short-range
potentials in a magnetic field

S. S. Murzin
Institute of Solid State Physics, Academy of Sciences of the USSR

(Submitted 23 March 1984; resubmitted 25 May 1984)
Pis’ma Zh. Eksp. Teor. Fiz. 39, No. 12, 567-569 (25 June 1984)

The transverse conductivity o, of a metallic system with defects of two types in a
classically strong magnetic field H is examined. The range a of the potential of one
of the defects is much greater than the Larmor radius of an electron r; the range of
the other defects is shorter than r. It is shown that the contributions to the
conductivity from scattering by different defects are not additive. A dependence of
the form o, ~H ~*/3 is possible.

The transverse conductivity o, of metals with a closed Fermi surface and of
semiconductors in a strong magnetic field </ (/ is the mean free path of electrons)
arises due to the displacement of the centers of electronic orbits as a result of scatter-
ing. The conductivity o, is related to the coefficient of diffusion across the magnetic
field D, by Einstein’s relation, which for a degenerate electron is o, = €*(dn/de)D,,
where dn/Jde is the state density at the Fermi level. If in each scattering event the
center of the orbit of an electron is displaced in a random manner, then the diffusion
coefficient is (see Ref. 1, p. 457)
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where the summation extends over collisions experienced by an electron in a time
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interval &8¢, and Ax is the change in the x coordinate of the center of the orbit as a
result of the collision.

Relation (1) is valid for scattering by phonons® or point defects.” However, as will
be shown below, it is not always valid in a system with randomly distributed defects,
whose potential range satisfies the inequality »<a</. This condition can be satisfied,
for example, for the potential of dislocations in a crystal or the potential of ionized
impurities in semiconductors.

In this paper we examine the conductivity of a degenerate electron gas in a crystal
with defects of two types. The range of the potential of one of the defects is a<r, and
that of the other is 5<r. We shall assume that the long-range potential is smooth and
that it has an amplitude u,<€, where € is the Fermi energy of electrons. The density
of defects with this potential is # Sa™>. For scattering by short-range defects we
introduce the momentum relaxation time 7. In the absence of long-range defects the
coefficient of diffusion across the magnetic field would be D, ~r*/7, while for diffu-
sion along the field it would be D | ~v}.7, where vy is the Fermi velocity. In contrast to
Refs. 4 and 5, we examine the case in which ! = v,7>a, (na®)~"'. Here (na*)~" is the
mean free path of electrons between collisions with the long-range defects. The relaxa-
tion of the longitudinal component of the momentum by defects @ can be ignored,
since ny<ey. Scattering by defects a can be viewed as a drift in crossed fields: The field
H and the field of the defect, E~uy/ea (see Ref. 1, p. 308). A single scattering event a
displaces the center of the orbit of an electron by an amount Ax ~v At ~n(uy/€r),
where vy, ~c(uy/eHa) is the drift velocity, and 4f~a/v; is the transit time of the

. electron in the field of the defect. The transverse displacement of the electron along its
mean free path in the direction of the magnetic field /, due to the interaction with
defects a, is Ax; ~ruy/€p)\nal)V? ~nluy/ex)7/70)"?, where 7, = (na®vy)~". It is as-
sumed that Ax, <a.

The main feature of our analysis is that the electron, after being scattered once by
a defect of size @ will return during the random motion along the magnetic field many
times to the defect before it is displaced across the field by a distance ~a. Moving in
the field of the long-range defect under examination, the electron will be displaced
each time approximately in the same direction by an amount ~Ax. The total displace-
ment is ~AxM (M is the number of times the electron returns to the defect), whereas
Eq. (1) yields a displacement ~AxM '/2 due to these distance collisions. The transverse
motion of the electron by a distance shorter than @ has a nondiffusive nature and
becomes diffusive only a scale greater than a. The step of such diffusion is on the order
of @, and the diffusion coefficient is D, ~a*/t, where ¢, is the time over which the
electron is displaced by a distance ~a. To determine ¢, we must find the displacement
of the electron AX (¢) as a function of time for AX (¢) smaller than a. We can find #, from
the equation AX (f)=a.

To find AX (t) we will make use of the fact that the probability for observing an
electron a second time in the field of the effect under examination after a time ¢ is a/
Dyt )'/2. The average drift velocity under the action of only a single defect is
Var ~Vgr @/(D2)"/>.  The corresponding displacement is Ax,(t)~vga/(t/
D )'"*~rp(ue/€p)(t /D ). The number of long-range defects with which the electron
interacts within a time 7 is on the order of (D ¢)"/*/(na?)~". Because of the random
distribution of defects, the square of the displacement of an electron over a time ¢ as a
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result of interaction with all defects, both long- and short-range, is

— D, t)V? r ug\2 ¥ t

[AX.(t)]z’V[Ax,(t)]ZE—‘l— + —t~ er——o t D Vg 42 (2)
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The time £, can be found from the approximate equality [AX (£)]°~a. The diffusion

coeflicient is
2

U \? 12,2 2
D ~ Py ~<VUF—> (to/D") na+ ré/7. (3)
0 EF

If the first term in (3) is much larger than the second term, we would have
D =D, ~ r* e /,”.z W3 (4o Jep Y3 <« g3, (4)

We see that the contribution of scattering by long-range and short-range defects to the
diffusion coefficient [and therefore to the conductivity o, = e*(dn/de)D,] is not addi-
tive. The quantity D, > r?/7, if (a/F)(r/7o)(uo/€r)* > 1.

We ignored the displacement of electrons in states in which the energy of motion
along the magnetic field is €, < u,. In the case of a repulsive potential #, an electron
with €, <u, is trapped for some time between two neighboring long-range defects,
reflecting first from one defect and then from the other [under the condition that
7> 74(€x/€,)?). The motion across the magnetic field is on the average driftlike.
Under certain conditions the transverse diffusion is determined by the motion of elec-
trons in states with €, <u,. Taking this into account leads to an additional restriction
for expression (4), (r/a) < (€x/uo)*(7o/ 7).

The mechanism for transverse diffusion of electrons which we examined above
could conceivably account for the deviation from the law o, <« H ~? in bismuth, ob-
served in magnetic fields stronger than 1 kOe (see, for example, Ref. 6). The character-
istic scale of the dislocation field nonuniformity is @ ~N ~'/2, where N is the number of
dislocations threading through a cross section of unit area. For N~ 10° cm ™2 we have
a~10"3 cm. The time is 7y~ (Navy)~'~a/vgy. In a magnetic field we have H = 10
kOe, in which the deviation from the law o, « H ~2, observed in Ref. 6, reaches 100%,
r~10"5 cm. Setting u,~A (b /a)~10"* eV, where b~10~" cm is the modulus of
Burgers’ vector, A~1 eV is the strain potential, €;~10"? €V, and /~10"? cm, we
find that (7/7,)(uo/€r)~ 102 ~r/a. This is the condition for which D, is comparable
to /7. In stronger fields D, « H ~—*/> dominates.
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