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A simple realization of a global Lagrangian description of the relative motion of a
monopole and a charge is given. This realization is based on a transfer of the
dynamics to the space of a stratification which is equivalent to a Hopf
stratification.

Wu and Yang' and Greub and Petry” have proposed a description of the quantum
chromodynamics of a charged particle in the field of a monopole in terms of a stratifi-
cation theory which excludes the Dirac string of singularities. The stratifications of
Refs. 1 and 2 are labeled by the integer n the Dirac condition 2eu = n. They are
constructed®> from a Hopf stratification (more precisely, from a stratification which is
homotopically equivalent to the Hopf stratification). Balachandran ef al.* have shown
that the transformation to a stratification space is possible and useful even in classical
mechanics. Our purpose in the present letter is to obtain a realization of a Lagrangian
system on the basis of the stratification® C 2/U, which will allow the clearest and most
compact representation of both the classical dynamics of this problem and the quanti-
zation. The group quantization technique of Ref. 6 is important in the realization
R 'XSU(2)/U(1) adopted in Ref. 4. In the present letter we manage to avoid that
technique.

We begin with a few words on the meaning of transforming to a stratification
space. This transformation means expanding configuration space by adding a gauge
degree of freedom. Only after this has been done can the overall monopole-charge
system have a Lagrangian description, albeit with a degenerate Lagrangian. The sys-
tem itself is not a Lagrangian system. The function

m'-2 -
—-2-x + eAx (1)

which is ordinarily used as the Lagrangian depends on the gauge, is singular, and is
invariant under rotations. The corresponding action is a multivalued functional of the
trajectory, and the variational principle must be understood in a local sense.*”® In
contrast, the Lagrangian in a stratification space is defined globally and is invariant;
the corresponding action is single-valued. The degeneracy of the Lagrangian in the
Hamiltonian description corresponds to a primary-coupling condition, which leads to
the relation 2ex = n and to a stratification series upon quantization.'?

Let us consider the space C? of pairs of complex numbers (z, = 2,6, z, = r,e™:).
We use the notation Z§ =7, + Z,{,, and we define the projection onto ordinary space
(R?) by the expression x; =Zzo,z, where the o, are the Pauli matrices. In spherical
coordinates we have r = r + 13, 6 =2arc ctg(r,/r,), and ¢ = @, — @,. Pairs of the
form (z,6" ,z,¢'*), ¢ €U (1) are projected to a common point x. In other words, if we
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remove the point which is the position of the monopole, x = 0, then we find that
R?=R?— {0} serves as a set of orbits onto which the C*> = C? — {0} action of the
gauge group U (1} stratifies. We consider the Lagrangian

L= '-:[4(z‘z/‘(z‘z’/ ¥ (12— Z2)2] + ien 2 %F 2)
It is easy to see that if we specify some local cross section [for example, if we set
ry =1r""?cos(6 /2), r, = r'"* sin (6 /2), ¢, = 0, @, = @], then (2) transforms into (1) with
the 4 of the corresponding gauge [in the present case, 4, =4, =0,
A, = (u/ritan(6 /2)]. The sum of angular velocities appears linearly in (2) with a coeffi-
cient eu, and the corresponding Lagrange-Euler equation takes the form of the identity
0 = 0; i.e., the motion along the gauge coordinate y = @, + @, is completely unde-
fined. Lagrangian (2 thus describes the dynamics of orbits, rather than of an individ-
ual point z. The other equations when projected onto R * give us the ordinary equations
of motion of a charge in the field of a monopole. We adopt the notation p = dL /
dzp = dL /3z. Using a Legendre transformation, we find the coupling surface

zZp — zp = 2iep, (3)
on which the Hamiltonian

1 a e2u2
He o (op - — ) (@
2mzz

is defined. The limitation of the simplectic form onto surface (3) is degenerate along
the gauge orbits. After a factorization in terms of these orbits we find the Hamiltonian
of the system in R 3, but for this Hamiltonian there are no global canonical coordi-
nates.*®

Returning to configuration space, we consider the space (fl ) of closed trajectories
in C? whose initial and final points are z,. The action S defined by Lagrangian (2) is a
single-valued functional on these trajectories. In addition to the trajectories z(z),
t € [0,1], we consider its projection x( ) and also the mapping of the segment [0,1] into a
circle, which associates with the point ¢ the gauge coordinate y (). If z{¢ ) and Z'(¢ ) have a
single projection, and the corresponding mappings into a circle cover the circle an
identical number of times, then we have S (z) = 5 (z'). The factor space of the space f2 is
singly connected from the standpoint of this equivalence and serves as a covering space
for the space (2) of trajectories x(¢), x(0) = x(1) = x,. Its role is analogous to that
played by a Riemannian surface in the theory of analytic functions: A transformation
to it converts an initially multivalued action functional into a single-valued func-
tional.®

Lagrangian (2) is explicitly invariant under the action of the stratification of the
SU(2) group in the space:

z~>uz, u € SU(2).- (5)
This action is a stratification automorphism and induces an action SO(3) = SU(2)/Z,
in R . The transformation u = exp( — ian;0;) corresponds to a rotation through an

angle 2a around the axis n. The invariance of Lagrangian (2) under transformations (5)
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thus explicitly expresses the symmetry of the problem under rotations. This symmetry
is formally lost in the standard formulation, (1). Corresponding to symmetry (5) of
Lagrangian (2) is the conserved quantity

1 . -
% (po;z~ zop). , (6)

With this choice of coefficients, this quantity is exactly equal to the angular momen-
tum J; = meg x; X, — eux;/r.

We turn now to the quantization. We replace p by — id /Jz, and we replace p by
— id /dz, in Eqgs. (3), (4), and {6). Coupling condition (3) takes the form 3 /3y = iept and
gives us a specific functional dependence of the wave function on the gauge coordinate:

U(z) = 5% Y (ry, s, 0). (7)

Since the wave function must not change when @, and @, are simultaneously increased
by 27, we find a Dirac condition on the charges: 2¢u = n. Expression (7) can now be
written

V(zel®)= MW (z), £* € U () (8)

If |n| > 1, the wave function does not change when the angles are increased by 27/n;
i.e., the wave function is actually defined in the factor space c Z,, which is homoto-
pically equivalent? to a lens L, . Under the natural definition of the action of the gauge
group, [z]e”® = [ze ~ /"], this action converts into a stratification for which (8) serves
as an equivariance condition.” A series of stratifications is reproduced in this man-
ner."? The action (5) dictates the following representation of the rotation group in the
space of wave functions:

V(z) > ¥(u 'z)
A representation of this sort was studied in Ref. 9. We see that the operator (6) is its
generator. For even values of n, this representation is single-valued, since the matrix
u = —1I does not displace points of the lens with an even index, and SO(3) actually

operates. For odd values of 7 representation (9) is double-valued, and the eigenvalues
of operator (6) are half-integers.

L. S. Shapiro drew my interest to the possibility of transferring the description of
the dynamics to a stratification space. The results reported here are an outgrowth of
discussions with B. L. Voronov, V. D. Skarzhinskif, I. S. Shapiro, and, especially, V.
Ya. Fainberg.
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