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The nuclei of a semiconductor near the donors can be polarized optically

[T,,(0)=107* sec]. This leads to the formation of a nuclear polarization front,
which is displaced from the donor within the limits of the diffusion radius,

similarly to a shock wavefront. An effective method of optical cooling of the
nuclear spin system to ~10~¢ K is used.

PACS numbers: 75.25. + z, 78.90. + t

Optical orientation of electrons in a semiconductor is accompanied by polariza-
tion of the nuclei.! The fluctuating electron field at the nuclei near a donor causes
nuclear relaxation with a time? 7, :

T = 2F Wi}y | (v? + Q%) (1)

where w{r) is the Larmor precession frequency of the nuclei in the field of the electrons
at a distance r from the donor, ¥ is the frequency of the fluctuations of the electron
field, £2 is the Larmor precession frequency of the electrons, and F is the donor filling
factor. In the case of n-type crystals we have F= 1.

The dependence of T,, on r is determined by the square of the modulus of the
wave function of a donor-localized electron |¥ (r)|* ~exp(2r/ag):

Tie' = Tig' (O)exp(~4r/ag). )

Here ap is the Bohr radius, and T',,(0) corresponds to r = 0.

The overwhelming majority of experiments on optical orientation of electrons and
nuclei in semiconductors have been carried out for steady-state conditions, We now
examine the process of establishing the steady-state condition.

Suppose that a change in the external conditions causes a transition between the
steady states corresponding to the values ( I;) and ( I,) of the average spin of the
nuclei. Incorporating Eqs. (1) and (2), we can represent the process of establishing
{I(r)) in the form

<Ifr,t)>=<5L>=(<L>=<I;>)exp[~ rexp(-4r/ap)i, (3)
where 7=1¢/T,,(0).

Equation (3) describes the location of the spherically symmetrical nuclear polar-
ization front as a function of ¢. Figure 1 illustrates the displacement of the front after
circularly polarized light is turned on at the time ¢ = 0. As seen from this figure, the
length of the front is ~(3/4)a;.
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In experiments the optical polarization of the nuclei is usually determined from
the effective field Hy = h, ( I), where h, = H,, for (I ) = 1. This field acts on the
electron spins and can be detected from the change in the degree p of circular polariza-
tion of the recombination radiation with the participation of these electrons.? The time
dependence of H,, can be found by integrating Eq. (3) with respect to r and taking into
account the r dependence of the electron density at the nucleus. For t>7,(0) we
obtain

, o C
Hy (1) = A [ <I(rht)>|¥(r)*r*dr ~ B~ T/;—(m% + 393In7 +8.79). (4)
o T

Here A B, and C are constants.

The front can exist only if the time 77, (0) is small. The influence of diffusion and
dissipation of the nuclear polarization in this case is insignificant. The n-type crystals
should have small values of T',,.

The experiment was carried out under conditions that combine optical cooling of
the nuclear-spin system> with its cooling by means of adiabatic demagnetization.
Such a combination makes it possible to obtain the minimum spin temperature S '
and a high nuclear polarization in weak magnetic fields, where T ;! is 2 maximum.

The experiment has three steps. 1) Optical pumping with a circularly polarized
light during a time 7, in a longitudinal magnetic field H, > H, , where H, is the local
field of the nuclei. At a sufficiently large value of ¢, for a lattice of identical nuclei
By =4l /u,)(S)YH :(H} + H7), where i, and I are the magnetic moment and spin of
the nucleus, and ¢ is a numerical coefficient (2 < £ < 3). 2} Adiabatic demagnetization.
A temperature B, ~f,H, /H, is reached as a result of demagnetization. 3) Optical
measurement of the nuclear polarization in a transverse field H, <H, which makes
possible a direct study of the spin-lattice relaxation process in a weak magnetic field at
a small time T,. The equilibrium nuclear polarization along the field H, at f3, is
characterized by an average spin (I) = {1/3)(I + 1)8,u,;H,. In this case there is a
transverse nuclear field H, which causes depolarization of the electrons (Henley
effect)

Hy =hy (4/3) [+ 1) I<S>H /H,. (5)

Figure 2 shows the variation of p = {(S), in a field H, = 0.1 Qe after optical
pumping of n-type GaAs at 4.2 K in a field /| = 100 Oe for 5 min (the earth’s field is
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FIG. 1. p(t) dependence for a GaAs crystal after
switching off the field H, = 100 Oe and turning
on the field H, = 0.1 Oe at a temperature of 4.2
K. The dashed curves were obtained from Eq. (4)
for T,,(0) = 10~ " sec (1), 10 — 2 sec {2), 1073 sec
(3), and 10™* sec (4).

FIG. 2. p(H,) dependence for a varying polariza-
tion of the excited light with a frequency of 50
kHz. The vertical arrow denotes the value of the
field H, equal to the field H,, at the point of the
plt) curve in Fig. 2 that corresponds to ¢ = 0.4 sec.

compensated for). The values of H at different points on the p(¢) curve in Fig. 2 can
be determined from the Henley curve for fast modulation of the polarization of the
excitation light (in order to eliminate H ) (see Fig. 3). Identical values of p in Figs. 2
and 3 correspond to the equality H,, = H,. Thus, at ¢ = 0.4 sec the deviation of p in
Fig. 2 corresponds to H 5P =38 Oe. An estimate of H, from Eq. (5) gives H £°°" ~200
Oe (hy =35.3k0e’, I =3, H, =2 Oe, and (S') = 0.025). This estimate corresponds to
B, ' 1uK. The value of the ratio § = H$®/H " ~0.2 is determined by a rapid
warming of the nuclear-spin system near the donor and by the motion of the tempera-
ture front (similar to the front in Fig. 1) during the recording. The fast recording of the
variations of the small values of p is limited by fluctuations of the light flux. The
experimental curve in Fig. 2 was obtained with a time constant of 0.1 sec. The quantity
6 corresponds to the contribution of the peripheral nuclei outside a sphere with radius
R ~2a,. The temperature front is displaced this distance at 7~ 10* consequently,
7,,(0) <107 sec. The quantity £ can be determined rigorously only at those r values
for which T, (r)>T, (T, is the spin-spin relaxation time of the nuclei). The region of »
(large 7), for which this condition is satisfied, has been observed in the experiment.

The calculated p(t ) curves in Fig. 2, which are obtained with the aid of Eq. (4) and
the curve in Fig. 3, are normalized at r = 0.4 sec. An estimate shows that during the
time ¢, of diffusion of the nuclear spins a distance equal to the length of the front it has
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no effect (within measurement error limits) on the p(z) curve. For GaAs z, ~5 sec. The
diffusion transport of polarization in the direction of the donor center causes an addi-
tional decrease of H,, and a rise of the p(t ) curve. An estimate of T, (0) S 10~* sec has
been obtained from a comparison of the calculated p(f) curves with the experimental
curve for ¢ <5 sec. In this case ¥ %2 10® rad/sec (w~ 10° rad/sec and F = 1) in Eq.
{1), and even weak fields (tens of oersteds) should slow the relaxation considerably, as
observed in the experiment. The value of ¥ corresponds in order of magnitude to the
half-width of the Henley curve in Fig. 3. This means that the fluctuations of the
electron field are determined by the recombination and spin relaxation processes.

A weak varying field (H, = 0.5 Oe} with a frequency of 7 kHz warms the nuclear-
spin system far from the donors, where T, is relatively large. In this case the spike of
p(t), shown in Fig. 2, is reduced to ~0.2 sec.

An interesting consequence of the smallness of 77,(0) and the formation of a
nuclear polarization front is the possibility of obtaining a given (I {r)) distribution near
a donor during a time that is limited by the diffusion process. For example, by using an
alternating-polarity sequence of circularly polarized light pulses with a duration that
decreases. logarithmically, we can obtain around a donor a set of spherical shells of
equal thickness with opposite nuclear-orientation directions in adjacent shells.

The authors wish to thank B. P. Zakharchenya for her continuing interest in this
work.
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