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A new method is proposed for studying parametric instabilities in a
homogeneous magnetized plasma. This method makes it possible to reduce the
problem of finding all the natural modes to one of finding the roots of a
polynomial, without invoking small parameters. The instability growth rate is
derived explicitly for the two-wave interaction. The use of this method

is demonstrated through a determination of the growth rate for the
modulational instability of a lower hybrid wave.

In general, the problem of finding the growth rates of a parametric instability of
a wave E(t) =E; sin({)¢) in a homogeneous plasma in a static magnetic field reduces
to the problem of finding values of w at which the following infinite determinant
vanishes:'
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Here [ is the unit matrix ({,,,=3§,,,, where
I, m=n,
Bmn= 0, m=n

is the Kronecker delta), D%, =R ndy_m(tt)y Dhp=RinIm_n(it), u=|k-r|, k is the
wave vector of an unstable wave, r is the amplitude of the electron oscillations in the
pump field,
b€, (0+m k)
a1 4+ 8€ (w0 +mQ k)’

be, (0w + mQ,k) is the contribution of the particles of species a to the longitudinal
permittivity of the plasma, and J,, is the Bessel function of the first kind of index ».

This problem can be solved analytically if the arguments of the Bessel functions,
i, are small, and it is sufficient to deal with the harmonics m=0, =1. Otherwise, it
becomes necessary to study the determinant of a large-rank matrix; that problem
cannot be handled analytically. A numerical determination of the eigenvalues of this
determinant, whose elements depend on o, is a complex problem. An effective way to
study infinite determinants which arise in a study of second-order differential equa-
tions with periodic coefficients was proposed by Hill.? If the matrix elements have no
singularities other than simple poles in the complex w plane, the infinite determinant,
being an analytic, meromorphic, periodic function of o, can be expressed as the sum
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of (a) a simple periodic function which has poles at the same points, and with the
same principal parts, as the determinant, and (b) an entire function. If we are inter-
ested in electrostatic waves in a cold, magnetized plasma, then the determinant of
system (1), D(w), while differing from that analyzed by Hill, does have some similar
features: D(w) is an even periodic function of w with a period Q , and its poles, which
are the roots of the equation 1+8¢,(w+n,k)=0, constitute eight sequences
w0* = +w,,+n0, n=0, =1, £2,..., where

w;zna+9’§1a (_l)m

= 3 + 3 [(a) +Q )2—40 a) o COS 2071V2, 2)

()

Here 6 is the angle between the wave vector k and the magnetic field, w,, is the
Langmuir frequency of the particles of species a, Qy, is the cyclotron frequency of
these particles, and m takes on the values 0, 1.

We write D(@) in the form
K,

D(0)=N(w)+ Z zsmz(ﬂ'a)am/ﬂ) S (ra/M)’ )

where
Kk 17 $in (27w g/ L) limsD 5 7D, sin(27wy,,/ Q) 4
am= _—-—Q-——— 81_1:[(1) ((L)am+ ) ’_Qaaea(w’k)/aw l o=w,, H ( )

and D,, is the determinant of the matrix D(w=w,,,), in which the row containing
the singularity at w=w,,, has been regularized: The 1 in this row has been replaced by
0, and the R,,, by 1. With K, chosen in this manner, the double sum on the right side
of (3) has principal parts which coincide with D(®) at all the poles of D(w), so N(w)
has no poles anywhere in the complex w plane. In other words, it is an entire periodic
function of w. It is also easy to see that N{(w) is bounded, since we have N{(w=iw)
=D(w=ix)=1, and according to the Liouville theorem it is identically equal to a
constant’ [N (o) =1]. The dispersion relation for this case is

K(lm
D(w)=1+ 2 Zsmz(moam/ﬂ)—sm (/) =0

a

(5)

where K, is given by (4). This equation reduces to a polynomial in sin(7w/€)). We
wish to stress that Eq. (5) is exact, and the errors in the calculated eigenfrequencies
are determined by the errors in the calculations of K,,,,, since there are no difficulties
in numerically finding all the roots of a polynomial of any degree. The problem can be
simplified substantially by considering the interaction between two wave branches, in
which we need to consider one root in each of the equations 1+ 6¢,(w+n,k)=0,
e.g., the case in which the magnetic field is zero or infinite. In this case the dispersion
relation is biquadratic in sin{rw/Q) and can easily be solved for w:

Q .
= +— arcsin , (6)
o

A+ (42—
(=

4B) 1/2) 1/2

where
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A=K, +K+sin* (70, /Quy) +sin’ (1o, /Qr1y),

B=K, sin’(rw; /Qy) +K; sin’ (7o, /Qry) +sin’ (70, /Qg)sin?(10; /Qp ).

If small parameters are available, an analytic solution can be found with any degree of
accuracy through an expansion of 4 and B in these parameters. Let us consider the
application of this method to the problem of the modulational instability of a wave at
the lower hybrid frequency*® Q=0w, /(1 +w‘2,e /Qi,e)l/ 2. An application of the
method to this problem is interesting because the maximum of the instability growth
rate approaches the pump frequency at large amplitudes of the pump wave, and it
reaches the pump frequency at’ u3>1. In this case the system has no small parameters,
and a large number of harmonics must be taken into account in order to solve the
problem correctly.

Let us consider the instability of a wave whose wave vector k is nearly perpen-
dicular to the direction (z) of the magnetic field: k; /k €w); /w,.. Under the condi-
tions

Qpi<w<Qy,, wpe<QHe’ w/kzuTe>lf krde(di)<1!

where 7,4 is the electron (ion) Debye length, and the increments in the permittivity
of the plasma for waves with k,/k=w, /0, are O€,= —-wlz,yz /w* and
Se;= —-colz,,-/coz, where y=k,w,, /ko,. The poles of the determinant D(w) are
@pn= %Oy y+nwy and w,= +nw,:. A distinctive feature of this system is that the
frequency of the pump wave, (}=w,, coincides with a root of the equation
1+8€,(ew,k) =0, and the determinant has second-order poles at w=w,,. In this case,

solution (6) remains in force, except that we have

K;=—u*lim [8*D(wy,+8) ]/
5-0

Figure 1 shows the growth rate calculated from (6) as a function of y for various
values of u. The solid curve is the y dependence of the instability growth rate, while the
dashed curve is the result of a solution of the equation
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1+oe(wk)  de k) T 4 (1+6ee(m+ﬂ,k)+56,»(w+ﬂ,k)

1

T roe(0—0K) +5e,(w—ﬂ,k)) =0.
This equation is ordinarily used to analyze this instability.*® Its range of applicability
is limited to values pp <€ 1 . For the small parameter value £ =0.3 (curve a in Fig. 1) the
results of the numerical calculations are essentially the same as the results calculated
from Eq. (7). At u=2 (curve b in Fig. 1), Eq. (7) generates incorrect results (which
are shown by the dashed curve in this figure). The number of harmonics which must
be taken into account in order to reach the required accuracy increases with increasing
pw (N=6at u=0.3 and N=15 at u=2).

The method proposed here makes it a simple matter to find the growth rates for
parametric plasma instabilities without the use of small parameters. This method can
also be used to solve problems in which infinite periodic determinants arise. Examples
are problems concerning the propagation of waves and electron beams in periodic
structures and the scattering of electromagnetic waves by relativistic electron beams.
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