Fermi resonance interface solitons

V. M. Agranovich and A. M. Kamchatnov

Institute of Spectroscopy, Russian Academy of Sciences,
142092 Troitsk, Moscow Region, Russia

(Submitted 2 February 1994)
Pis’ma Zh. Eksp. Teor. Fiz. §9, No. 6, 397-401 (25 March 1994)

The nonlinear dynamics of the interface between two layers of organic
semiconductors is discussed for the case of the Fermi resonance, which occurs
when the energy #iw® of excitation on one side of the interface is
approximately equal to 2#iw®, where #w® is the excitation energy on the other
side. The Fermi resonance interaction across the interface gives rise to
nonlinear plane waves, which propagate along the interface, and also to 2D
solitons which are localized at the interface.

1. It is well known that the epitaxial growth of inorganic semiconductors is
limited to materials with a small lattice mismatch. The organic materials, in contrast,
are bound by weak van der Waals forces, which allows the layering of materials with
different lattice constants. Great efforts have therefore been undertaken recently to
create thin, strongly ordered, crystalline organic films and multilayer structures.!”
The theoretical analysis of linear and nonlinear optical properties of multilayer organic
structures has also become topical and some problems in this field were discussed in
recent papers.‘s'14

One of the mechanisms of a ‘““hand-made” optical nonlinearity of multilayer
organic structures, which was pointed out recently,g’9 is based on the Fermi resonance
between excitations of neighboring layers. In Refs. 9, 10, and 12 such interface Fermi
resonance was discussed for the case in which the energy of two excitons 2#w® in one
layer is close to the exciton energy, #iw’, in the neighboring layer. In these papers the
new states-——quantum and classical Fermi resonance interface modes (FRIM)—were
found. These modes appeared as a result of an intermolecular anharmonic interaction
across the interface. This phenomenon extends the usual Fermi resonance in the bulk
molecular crystals and can be important, as was shown in Refs. 8~14 in the investi-
gations of the linear and nonlinear optical properties of multilayer structures.

In the limit of strong pumping, i.e., for large occupation numbers of excitations,
it is natural to use a classical approximation suggested for the FRIM model in Refs.
8 and 10. It was shown in Ref. 10 that the anharmonic interaction under consideration
can lead to bistability in the energy transmission through the interface. Using the very
simple 1D model, it was demonstrated that there is a close connection between bi-
stability and classical FRIM.

We can now extend this model to the 3D case with a 2D interface. We will
consider the energy propagation along the interface.

2. We assume that the bilayered structure consists of two molecular crystals
which are separated by a perfect plane interface. The c-type molecules occupy the sites
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of the simple cubic lattice to the right of the interface (n,, n,, n; n,=0, 1, 2,...) and
the b-type molecules occupy the sites of the lattice to the left of the interface (n,, n,,
n; n,=—1, —2,...). To demonstrate the appearance of the Fermi resonance interface
solitons, we consider here a simple case of the Fermi resonance between ¢ and b
harmonic vibrations, assuming that #io~ 2%w®. For this case the main anharmonic
interaction between the ¢ and b molecules corresponds to the cubic anharmonicity. It
has the form

ﬁint=r[601ny’nz(bT— l,ny:nz)2+H,c_],

where b*(b) and cT(c) are the creation (annihilation) operators for the & and ¢
excitations.

In the classical approximation we replace all operators by their mean values

by pn) = B, ,nand{c,,,) = C,,,., where B and C are classical amplitudes of
X' ynz X' ynz X’ y"z X )’lz

vibrations. In our model these variables satisfy the equations
n px /Ot—w n nynz_ Vb( an-— l,n},nz+ an+ lyny’nz+ an,ny— l.nz+ an,ny+ Ln,

+B,, +B

x"yn,—1 "x’ny'

n+1)=0 (1
for the molecules in the bulk of the b crystal,
i0B_ l,nynz/at_bi— Ly~ Vi B _omgn,tBotn—tn,t Bt in,t Bt -1
+B_1nyn+1) =20 B* 1y n Conpn,=0 (2)
for the b molecules near the interface (n,= —1),

iaCO,nynz/at_wcCO,nynz— Vr( Cl,nynz+ CO,ny— l,nz+ CO,ny+ l,nz+ CO,nynz—- 1 + CO,nynz+ 1 )

-TB. =0 (3)
for the ¢ molecules near the interface (n,=0), and

10C, 1 /It —Co sy —V*(Co 1+ Cr s tnm+ Coon .+ o i,

+Conyn,—1+Conn,+1) =0 (4)

for the molecules in the bulk of the ¢ crystal.

We shall seek the solution, localized near the interface, in the form of a plane:

Bn "y" =Be_£2g tekb”xe%(ky"y+kznz)’
(5
Cn " =Ce—iwte—-xcnxei(kyny+kznz)_
with «,>0 and «,.>0. From Egs. (1) and (4) we find
w®—w/2+42V?[cosh k,+cos(k,/2) +cos(k,/2)] =0, ]
(6)

w°—w+2V*(cosh «k.+cos ky+cos k,)=0.
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These equations give us the values of , and k. as functions of @ and (k, k,).
Equations (2) and (3) give the relationship between the variables B and C which can
be written with the help of (6) in the form

2 B*C=V?Be*s, T B*=V*Ce* . (7)
These relations yield immediately
IE|B|2=QW+%, (8)
2r
As follows from (8), the quantities k, and «, are real in case of real V?, V¢ and T and

they increase with increasing intensity I. The quantities ¥%¢** and F*¢* can be easily
found from (6), which leads to the dispersion relation in an implicit form

2= {g—wb—ZV”[cos(kyﬂ) ] +cos(k,/2) |+

(g—wb—ZVb(cos(ky/Z)

2 172
+cos(kz/2))) —4(?| Ho—w—2V(cos k,+cos k)

+ [(0—w°—2V*(cos k,+cos k)Y —4(V°)*V3. (9

If ¥* and V* vanish, we return to the two-molecule model discussed in Ref. 10. The
signs in front of the roots correspond to the positive values of
{w/2—wb—2Vb[cos(k/2)+cos(kz/2)] and [0 —o°—2V*(cos k,+cos k,)]}; other-
wise, they should be reversed. Such a choice leads to the correct limit as ¥?, ¥*—0.

3. In the long-wave limit |ky| ,| k.| €1, Eq. (9) leads to the quadratic depen-
dence of @ on the wave numbers k, and k,. If we consider a nonlinear, nonuniform
wave propagating along the interface in the z direction, then the variables B and C will
depend on ¢ and z and their equations of motion will have in the long-wave limit the
form

98 >°B 17’7823 2I'B*C=0
T =Y
(10)
9 g ZS_rpso
TR ™ A

where a')b, oF, V”, and V* are constants determined by the dispersion relation in the

limit of small |k,| and at k,=0. These equations may be considered as equations
describing the two-plane model with renormalized parameters.

We would like to demonstrate that the system under consideration has soliton
excitations. To this end, we consider a very simple case in which the solution of Egs.
(10) has the form

B=Fexp[(—iQt+ikz)/2], C=PBFexp(—iQi+ikz), F=F(z—ut), (11)
where B is a constant. Substitution of these expressions into (10) yields

(Q/2— &P+ V2K /4)F —i(v+ VPk)F’ — VPF" — 2T F?B=0, 02
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(Q—&°+ Vk2)F—i(v+2Vk)F' — VF” —TF%/B=0.
There are two ways in which the imaginary parts of these equations can vanish:

(i) k=0, v=0,

~ - - - (13)
(i) VP=2V%, v=—Vlk=_2Vk
First, we consider the case (i). Equations (12) for F are compatible if
Q2-a" v 25 14
Q_a’;c - Vr:— B ’ ( )

where 8 and () are given by

\/’W 0 2PV — &)

In what follows we choose the positive sign for 8. Then F will satisfy the equation

2 2
FAT\ g F2=0. (16)

Its integration gives (the integration constants are such that ' -0, F—-0as z— «)

a

cmoshi(lcz) ’ tn
where
3V 2006 1 /20°—a"\'?
=Bt vt KT (?7275) (18)
Thus, we have found for real k the soliton solution for the interface wave
ae™ W2 afe " (19)

B = ’ C= )
cosh? (kz) cosh? (kz)
where all the parameters are defined above. This solution corresponds to the soliton at
rest. Apparently, it is a very special case of a more general soliton solution.

The case (ii) in (13) leads to a particular solution for a moving soliton. Now we
have

2 oV
B=x1, Q=3 (2af—w”)-7k. (20)
Integration of the equation for F leads to the moving soliton solution:

a exp(—iQt/Z—ivz/2V’) a exp(—iQt—ivz/f/”)
cosh? [k(z—uvt)] ’ ~  cosh? [k(z—uv1)]

, (21)

where
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1, & 28"
a=-—— (&°—20"), k= 22)

2r 3%
As v goes to zero, we return to the solution (19) for the soliton at rest with yt—2p~.
One may expect that there are soliton excitations for a more arbitrary choice of
parameters which describe the system. This possibility will be discussed elsewhere.

In summary, we have found that there are Fermi resonance interface modes
which propagate along the interface between two crystals, provided that their vibronic
excitations satisfy the Fermi resonance condition. In the limit of strong excitations
these modes can be described by classical theory, and for some parameters or frequen-
cies they can exist as the localized soliton states. Such propagating modes can play an
important role in the energy transmission along the interfaces.
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