Effect of magnetic induction on the Kosterlitz-Thouless
transition in layered superconductors

A. Yu. Martynovich
Donetsk Phystech, 340114 Donetsk, Ukraine

(Submitted 8 February 1994)
Pis’ma Zh. Eksp. Teor. Fiz. 59, No. 6, 402405 (25 March 1994)

The effect of external magnetic field on the resistive transition in a decoupled,
layered, Josephson superconductor is investigated. The critical induction

B_., which is quite small with respect to the lower critical field H, is obtained.
At a small induction, B < B, the second-order resistive transition occurs

as a Kosterlitz-Thouless transition. At a large induction, B> B, the second-
order phase transition changes to a first-order transition and the vortex

pair dissociation has a hysteretic behavior in the temperature interval which is
close to and below the Kosterlitz-Thouless temperature T gxr. The lowest
boundary of this interval decreases with increasing induction and coincides with
the temperature of the resistive transition.

The appearance of resistivity in a layered Josephson-decoupled superconductor is
stipulated by a two-dimensional (2D) vortex pair dissociation. The resistive transition
occurs at the temperature

Ter= ¢(2) 1
KT=162A(Txp) (1)

in zero magnetic induction and is fully described in the framework of the Kosterlitz—
Thouless model as a second-order phase transition.'”* Here ¢, is a flux quantum,
A=2A4/d, A is the magnetic penetration depth, and d is the interlayer distance. Recent
experimental studies of the effect of the magnetic field on this transition have revealed
a set of unusual properties. The temperature of the resistive transition 7* coincides
with T i when the external field increases from zero to a critical value B, and when
T* begins to slowly decrease in a field larger than B,,.* The rate of reduction of 7'( B)
noticeably increases with increasing insulating layer thickness of the superconductor.’
A hysteretic behavior of the resistive transition and of the first-order phase transition
was observed in Ref. 6. The hysteresis width of the temperature increases with applied
field. In this paper I will attempt to explain these peculiarities on the basis of the
Kosterlitz-Thouless model by taking into consideration the magnetic field which pen-
etrates into a layered superconductor as a flux line lattice.

We consider a system of identical superconducting layers with a spacing d be-
tween them, a layer thickness much less than d, and a penetration depth A. The
distribution of the vector potential A(x) in all the space and the screening currents in
the superconducting kth layer will be described on the basis of the Lawrence-Doniach
mode] with zero Josephson coupling:
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L) 2 VO(x—x2) —A(x)

N 8(xy—kd). (2)

curlcurl A(x) =

Here the phase gradient VG(x—x,-,k) is a magnetic field source of a 2D vortex placed
in the kth layer. The 2D vortices are divided into two main parts:

2 V0(x—xgk)= 2 V(x—R)+ z f d&* X [nf (x") —ng (x")]VO(x—x').
ik R k
(3)

One of them forms a flux line lattice, i.e., stacks of 2D vortices whose centers R are the
same in each layer. The second one is a gas of free excitations. Averaging densities of
positive excitations n;" (x) and negative excitations n; (x), we see that they coincide
with each other, which follows from the condition of vortex-antivortex pair dissocia-
tion. Interaction of free excitations with the flux lines leads to the space distribution of
gas density:

n*(x)=ng (x")exp[ —BU(x—x")], (4)
1
B=+.

U(x) is the energy of interaction of the 2D excitation and the flux line lattice. To find
ny~ we consider an extreme case of 2D antivortex on the 3D vortex axis. The 2D

antivortex and 2D vortex from a stack of vortices annihilate each other and their place
is occupied by a pair from the free dipole gas, whose density is equal to ng;,. Thus,

ng =ng, expl —BU(0) —BFy]. (5)

Here F, is the 2D vortex self-energy, and U(0) is the energy of a 3D vortex link
interaction with all other flux lines of the lattice.

The free excitation density can be written in the form
n~(x)=ng exp(B(U))exp(B [U(x) —(U)]).

For the linearization of n~ (x) we expand the second exponent only, because the value
BU(x) can be in excess of 1 in the case of a dense flux line lattice.

The equality of total numbers of free 2D vortices and antivortices from excitation
gas leads to the condition

ng exp(—B(U)) =ngy exp(B(U) ) =ny.

The main results, which are obtained by solving linearizing Egs. (2)-(4) following
Ref. 7, are the self-energy of the 2D excitation,

2mA
Fo—‘%o_Ko (§) , llng)= Pt

and the equation for the unknown equilibrium “density” n, of excitations,
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n0=ndip(l+m ) exp| —2BT 1K, ( 7 )’ (6)

Here the dimensionless induction is

4mA%\ 23
b= B( ) =L
o T
It is clear that at a finite value of /(ny) the logarithmic singularity of Fy is absent and
the self-energy of a 2D vortex in the excitation gas is finite.

Let us solve Eq. (6). One of the solutions of Eq. (6) is ny=0, which is valid in
the entire temperature range. Nonzero solution of n3(7') defines the nonzero resistiv-
ity, so the temperature minimum at which ny=0 is a first-order resistivity transition
one T%*.

In the case of zero induction b=0, the nonzero density

n0=ndippz<1, (7)

Tkr Tkr
. 2 _ KT L
P=ngi,§2m exp(Zy T ), z T—Txp’

appears at T > Ty only. Here we assume that p<1 at T=Tgy. An analysis of all
known experimental studies of superlattices and strong anisotropic superconductors
confirms this assumption. We note, however, that the value of p is very close to unity®
and that any induction 540 leads to an increase of this value. It is worth noting that
the critical value of the induction at which p=1 exists is quite small, b« 1, and we
find p>1at b>b,,.

Solution of ny(T) has a significant peculiarity at > b, namely, a nonsingle-
valued dependence on the temperature. Numerical solutions of Eq. (7) at different
inductions are shown in Fig. 1. We see that in the case b> b =1 a nonzero density n,
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FIG. 2. Dependence of the low limit of T';, of the
hysteresis region of n,(7) on the induction for
Txr=1, b =1, and x=200.
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exists below the critical temperature T gr=1. The lowest value of T';, on the tem-
perature scale occurs when ny(7)0. The dependence T;,(d) is shown in Fig. 2.
The lowest curve with the label 7= o is the solution of Eq. (7) with constant values
of A and £. This condition is valid when T g4 is very small with respect to the
superconducting transition temperature 7. The difference between T, and T 7 of the
layered superconductor is roughly equal to several degrees, and we must take into
account the dependence of A and £ on T. In Fig. 2 we also show the dependences
T in(P) for two small values of T, which slightly exceed T gy .

The discovery of critical induction B, at which the type of phase transition
changes is the main result of my paper. At a small induction B< B, the 2D pair
dissociation occurs following the KT scenario. In this case the free excitations are
absent upon an increase in temperature to T g7 and their density slowly increases at a
temperature greater than T gxr. Another picture is observed at a large induction
B> B_., when the disruption of the vortex pairs is caused by a first-order phase
transition. There is a certain temperature interval

[Tmin! TKT]’ (8)

in which the function ny(T") is nonsingle-valued. It is easy to understand that the two
solutions, namely, n,(7") =0 and the maximum value of n,, correspond to the local
minimum of free energy in the hysteretic region (8), and the middle of ny(T) de-
scribes a potential well between them. We note that stable solutions of n,(7") do not
come in contact with each other and the transition from one solution to the other must
be accomplished by a jump.

The hysteretic behavior of ny( T), which consists of density jumps, is more prob-
able in the case of temperature cycling. The resistivity of the superconductor should
increase abruptly upon appearance of free excitation. Hysteresis of n,(7T) therefore
manifests itself in the form of irreversible and step-like behavior of the current-voltage
characteristic. At the same time, an increase in induction leads to an expansion of the
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temperature region (8), in which the resistivity is irreversible. Such an R(T) depen-
dence was described in Ref. 6. A nonlinear widening of the hysteretic temperature
interval with increasing induction is in agreement with the numerical solution shown
in Fig. 2. In addition, the experimentally observed hysteretic interval is very narrow,
<0.1 degree. Such a narrow range (8) can be obtained from the theory when T g7 and
T, differ from each other by only about 1 degree, which was confirmed by many
experiments.

For the first-order phase transition a sample divided into domains is more typical
with respect to a uniform phase transition. In our case the domains are regions with
ny=0 and nonzero n,. A domain can exist only in the temperature region (8). The
relative volume of the domain with rn,z<0 increases from zero to unity at 7= T g with
increasing temperature. The resistivity in a sample divided into domains should occur
at T'~T_;.(B). A decrease in the temperature of the resistive transition as a result of
increasing the induction has been established experimentally (see, for example, Refs.
4 and 5) and it qualitatively coincides with the dependence T';,(B) obtained by us.
We note, in particular, Ref. 4 in which the resistive transition was studied at small
inductions and it was shown that 7', deviates from T g at B> 15 Oe. I believe that
future experiments will confirm my model in detail.
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