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A new nonlinear integrodifferential equation describing gravity waves at the
free surface of an ideal liquid of infinite depth is constructed in 2D
hydrodynamics. Exact solitary-wave solutions of this equation are derived.
The velocity field in these solutions is a strongly nonmonotonic

function of the distance from the surface. The potential flow associated with
such a wave contains moving local vortex singularities, both inside and
outside the liquid. For irrotational flows, a generalization is made to the case
of a liquid of finite depth.

1. Solitary gravity waves at the free surface of a liquid have been studied in detail
only in shallow-water theory, in which the distribution of the velocity amplitude over
thickness is approximately flat. A large number of nonlinear model equations have
been proposed in that formulation of the problem. The most important are the Bouss-
inesq and Korteweg—de Vries equations.! In the case of deep water, the research has
focused on periodic waves of finite amplitude, their instability with respect to long-
wave modulations, and the formation of envelope solitons as the end result of this
instability.> These topics have been the focus of this research since the classic studies
by Stokes. Again in the nonlinear theory, these waves are classical surface potential
waves whose amplitude falls off monotonically (exponentially) with distance from the
surface. No solitary waves in the form of single peaks or valleys in deep water have
been derived theoretically so far, although motions of this sort at the surface of water,
called layer bands, are well known in the open ocean.* In the present letter we show,
in a rigorous, spatially 2D formulation of the problem, that steady-state solitary waves
with a local vortex structure can exist near a free surface.

2. We consider the 2D problem of waves at the free surface of an infinitely deep,
ideal liquid in a uniform gravitational field. We choose a Cartesian coordinate system
whose Y axis is directed vertically upward and whose y=0 plane coincides with the
unperturbed surface of the liquid. In the region of potential flow, the D~ potential
¢ (x,y,t) satisfies the Laplace equation with corresponding (generally nonlinear)
boundary conditions y=m(x,t) at the free surface.! We assume that the flow can
contain isolated singular points of the pole type, so region D~ is, in general, multiply
connected. We assume that the perturbations of interest are slightly nonlinear and
have a length scale /:

|65yl <1, |m] <1 ey
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In the approximation quadratic in the amplitudes, we formulate a boundary-value
problem for the half-plane 0 <y < — « by moving the boundary condition away from
the unknown surface y=7(x,t) to the y=0 plane:

Gxxt¢y=0, x,yeD, (2)
‘Ptt+¢y+ ((pi+¢§')’—‘pi(‘ptt+¢y)y+=o, y:O’ (3)
¢t|y=_w=0. (4)

An expression for the profile 17(x,¢) is found from the Bernoulli equation:

1
150 =~ @+ @@y~ 5 (Pt-@)) +-.... (5)

For the potential ¢ and its derivatives calculated at y=0, we change the notation to ¢.
In potential theory, the dimensionality of a boundary-value problem in terms of in-
dependent variables can be lowered by one by introducing a boundary value of the
potential. An equation for this boundary value of the potential is a condition at the free
surface.” For this purpose, we introduce the complex potential W (z,t) =¢(x,,r)
+ip(x,p,t) and the Keldysh function® S(z,2) =i W,— W' in multiply connected region
D~ of the plane z=x+Jy. Here ¢ is the stream function, ¢ is a parameter, and the
prime means the derivative with respect to z. If the limiting values of these quantities
as y— —0 are denoted by W~ (x,r) and S~ (x,?), then boundary condition (3) can be
put in the form

ImS™(x,¢) + (| W, |*),—ReW, ReS; +...=0. (6)

To find an equation for reconstructing the analytic function W (z,¢) in a multiply
connected region ze D, we take the approach of the linear conjugation boundary-
value problem.” Using the Schwarz symmetry principle, we construct functions
W.(z,t) and S.(z,f) which are analytic in region D' in the upper half-plane:

We(z,t)=W(Z,t) and S.(z,t) =S(Z,t). Their limiting values as y— +0 are W~ (x,t)

and S (x,?), respectively; the superior bar here means complex conjugation. Using
the piecewise-analytic function G(z,t) =S.(z,t) for ze D* and G(z,t)=S(z,) for
ze D™, we then can write boundary condition (6) as a discontinuity in the function
G(z,t) at the crossing of the real axis:

Gt —G~=2i[(| W, |*),—ReW ReS; ]. (7)

In our case it is assumed that the function W (z,#) and therefore S(z,¢) in the volume
filled by the liquid have only isolated pole singularities, and that an infinitely remote
point is an ordinary point for them. We write these functions as the sum of a regular
part in the lower half-plane and a pole part: W=Wy+ Wp and S=Siz+Sp. The
function Sz(z,¢), which is analytic in region D~, is then reconstructed from the
discontinuity in (7) and the poles with the help of Cauchy integral:

1 e (IWE(ED]D)—q(8D)
Sz +5,G0 = f Ve g_'z :
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where g(x,2) =ReW ReS, . Correspondingly, the limiting eigenfunctions W™ (x,t)
of homogeneous boundary-value problem (2)-(4) can be found from a solution of the
nonlinear equation of dimensionality (1 + 1):

— i e (IWEED])—aED)
(W;+W;),,+i<W;—W;)x+%f_ | gg_leH’.O d¢=0. (9

An initial-value problem for this equation can be formulated in exactly the same way
as in a study of the motion of objects below the surface of a liquid, with the sources
Wp(z,t) assumed given.® For waves on deep water which are approximately linear
(W, =iW, ), we can evidently use the approximation g(x,t) =0. We call this model
equation “truncated.”

3. In the particular case in which the regular part of the complex potential
Wy is a rational function with poles in the upper half-plane, we seck steady-state
rational solutions of truncated equation (9) in the form of an expansion over the poles
which is the same for the entire complex plane:

WD, (z,t)= Z Z m’ zeD™. (10)

m=1 n=1

Here z,,=x,,+1iy,, are the coordinates of the poles of order NV, in the complex plane,
C,.. are their constant intensities, and A is a spectral parameter of the problem. This
parameter represents the velocity of the multiple-pole formation, which vanishes at
infinity.

By virtue of the scale invariance of Eq. (9), we can choose the position of one of
the poles in solution (10) arbitrarily. All the other unknown parameters can be found
unambiguously—under the sole condition that there are no complex-conjugate pairs
among the poles—from the system of M+=Y_ N, nonlinear algebraic equations

M
A2(n—1)Cp_ i —iCom+2A 2, B™ =0, m=1M, n=1,N,+1, (11)

m'=1
1V+I n N ,
B = Y Z
k=0 K=
k+k'
(—1)"( *,; )k’(k+n—1)

- ’
(zm’*zm’)k+k +1

X Crein1mChrm - (12)

An exceptional property of nonlinear truncated equation (9) is that it has solu-
tions of the form in (10) for any natural values of M and N,,. To find particular
solutions of nonlinear algebraic system (11), we use a numerical method, specifically,
Newton’s method. Here we will discuss only one series of exact solutions correspond-
ing to the complex potential:
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All the poles lie on a common vertical line. They are numbered in such a way that the
index increases with the height of the pole along the vertical. Poles with negative
numbers and the zero pole are in the liquid (y_,,= —y,,), while those with positive
numbers are outside it. The pole m=M is a double pole, while the others are simple
poles. For a given value of M, the corresponding system of algebraic equations in (11)
is of (4M +3)th order. For values M =1.17, we studied a series of solutions corre-
sponding to symmetric solitary waves with a single crest. It was found that the
amplitude 7,5, 1(0) and the velocity 4,5, of the waves fall off monotonically as M
increases.

Figure 1 shows a pattern of streamlines for M =2. This pattern was found as the
imaginary part of the complex potential in the coordinate system of the wave:
P=—A®p 4+ ImW® (x,p). The rectangles enclose simple, low-intensity poles with
indices m= —1, 0, and 1. The null streamline corresponds, by definition, to the profile
of the free surface. Figure 2 shows the same profiles, for the values M =2, 7, 12, and
17, as calculated from Eq. (S5). In dimensional values, the parameters of the wave for
the case M =17, /=50 m are a height ~0.8 m, a width ~ 500 m at the y=0 level, a
velocity ~9 m/s, and a depth ~70 m for the lower pole. The condition that the
nonlinearity be slight, (2), holds by a wide margin.

4. A large number of different multiple-pole solutions of nonlinear algebraic
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system (11) were calculated numerically, with one, two, and more maxima, for both
the truncated equation and the complete model equation of the quadratic theory, (9).
For an air-water two-layer medium, the ratio of the densities of the two layers is so
small that the slower motions in the ocean are detected nearly instantaneously in the
atmosphere. Accordingly, the existence of steady-state solitary waves in our model of
an inertialess atmosphere can be thought of as the result of an interaction of potential
flows in the atmosphere~ocean system. The exceptional diversity of these flows sug-
gests that they may be primary energy sources and the factor responsible for the
formation of storms (gales) and other anomalous states of the ocean surface.

5. In generalizing Eq. (9) to the case of a liquid layer of finite depth A, we restrict
the discussion to purely potential flows.” The potential in a band is reconstructed
unambiguously from the known function ¢(x,?) at y=0 and from the condition at the
bottom, ¢,,—_,, by means of the integral representation

sxon= [ plengs—xpds (14)
1wy X wy x| !
g(x,y) =7 sin ﬁ—cosh 27:(0087 —cosh 7) . (15)

Using (14) to calculate the necessary derivatives at y=0 in (3), we find, in the
quadratic approximation for ¢(x,t), an explicit nonlinear integrodifferential equation:

a3
Pu—L(x) +3 [ @+ L@V )+ @[ @~ L) 1 =0, (16)
where
a [« @(§,1)dE T
L(Q(X,t))=;f_wm, a=gp. (17)

The integral in (17) is to be understood in the principal-value sense. Equation (16) is
valid for arbitrary h; it takes dispersion effects into account exactly. In particular,
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when we use the relation L(e**)=itanh(kh)e™, we find from the linearized
version of Eq. (16) the known dispersion relation for surface gravity waves:
w*=ktanh(kh). Let us look at some limiting cases.

A. Shallow water (h—0)

The kernel of the L operator in (17) has a sharp peak at §=x. A power-series
expansion of the function @(&,#) near this point yields, after an integration,
L(@) ~h@+ (B/3) @yxx+.... When we retain only the first of the nonlinear terms in
(3), and replace it by the approximate value (¢2),~  (¢2),, where the % corre-
spond to the forward and backward waves, we find the Boussinesq equation,

n 5
(Ptt_h¢xx—~3_ ¢xxxx:F3(‘px)x=0- (18)

B. Deep water (h— o)

According to (17), L(¢) becomes a Hilbert transformation in this case:

1 o @(£t)d
tim,....Lig) = | %{—x—gsmw. (19)

Introducing the limiting functions W=* (x,t) =@ +iH (@), we can put Eq. (16) in the
form in (9) if there are no pole singularities ( Wp=0).
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