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A 1D superlattice in which a hierarchical modulation of the potential is caused
by impurity centers in potential barriers is discussed. A transfer-matrix

method is used to calculate and analyze the tunneling spectra of this hierarchical
superlattice.

Hierarchical structures are attracting interest for several reasons. First, reaching an
understanding of the properties of such structures is a necessary step in describing several
physical effects, such as classical diffusion,’ molecular diffusion in complex
macromolecules,” anomalous relaxation in spin glasses,” and processes which occur in
computer systems.” Second, hierarchical structures are distinguished by some unusual
physical properties, in particular, Cantor energy spectra, self-similarity, and crystal wave
functions (see, for example, Refs, 5—8). Hierarchical structures are thus important topics
for research, from both the theoretical and practical standpoints. We might add that the
popular quasiperiodic Fibonacci series can also be thought of as hierarchical models.’

In the present letter we discuss one type of semiconductor hierarchical heterosystem.
The reason for the large interest in semiconductor structures, in particular, is that tech-
nological progress has made it possible to realize some complex structures experimen-
tally. We suggest creating a hierarchical modulation by means of deep impurity centers
implanted in potential barriers of a semiconductor superlattice. Since technological pro-
cedures for doping semiconductor heterostructures with deep impurities are well known,’
we believe that the model of hierarchical systems discussed in this letter is relatively
simple and convenient for both experimental and theoretical research. We might add that
it was shown in Ref. 10 that deep levels have a very strong effect on the energy spectrum
of a periodic superlattice. The first experimental confirmation that deep centers play an
important role in barriers and electronic processes in superlattices was found in Ref. 11.
Below we calculate the transmission coefficient 7 of a superlattice constructed in accor-
dance with a hierarchical principle. The intervals of the energy E in which the condition
T(E)=~1 holds make up the energy structure of these superlattices. The analysis is carried
out by an effective-mass method with the help of the technique of transfer matrices.

We consider a semiconductor superlattice made up of 1D rectangular barriers of
height V and width b. The superlattice is constructed from elements of two types,
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which differ in that a B element contains a deep-center impurity plane'” (the dashed line).
There are no such planes in the A elements. The order number of a barrier with impurities
(of the corresponding B element) in the chain of the superlattice is 2° for each level of the
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hierarchy, s=2, 3, 4, ... . A flux of electrons of energy E is incident on the superlattice
from the left. This flux moves along the axis of the superlattice, which coincides with the
x axis, which runs from left to right. The potential of the deep centers is modeled by a
é-function: U(x)=()- &(x—x;), where {1 is the strength of the potential, and x; is the
coordinate of the impurity center. In the effective-mass method, the motion of the elec-
trons in the potential barriers is described by the equation

(d?/dx— k) p(x) = BS(x—x,) P(x), (1)

where 8=2m,Q), k*=2m,(V—E), h=e=m,=1, and m, is the effective mass of the
electrons in the barriers. A solution of Eq. (1) and of the equation describing the state of
the electrons in the quantum wells is written in the form

ll’p: Cpeikx+Dpe“ikx’ (2)

where we have k= — ik in the barriers. We also assume that the wave numbers with the
same energy in different quantum wells are identical (k*=2m E, where m, is the
effective mass of the electrons in the wells). The same comment applies to the barriers,
without regard to the wells. We set C;=1. We set the coefficient D with the highest
index equal to zero. This condition corresponds to the absence of a reflected wave beyond
the last barrier. We seek a solution of the system of equations for the coefficients C and
D by the method of transfer matrices. The matrix which transfers the solution across the
barrier—well interface is

(kn +kn+ 1 )exp{l( —kn +kn+ i )xn} (kn _kn+l)exp{_i(kn _kn+ 1 )X,,}

(k"—'k,,+ 1 )CXp{i(k,,+ kn+ 1 )xn} (kn+kn+ 1 )exp{i(kn_kn+ 1 )xn} ( ’)
3

where n is the index of the heterojunction. The matrix which transfers the solution
through impurity centers is'?

R 1
n_ﬁ;

1 2K_ B _ BeZKX]-
j: a5 2kx; . (4)
2K\ Besi 2kt P
The coefficient of the transmission of an electron through the superlattice is
T -2
rE)=|( 11 &) | (s)
n=1

11

where r is the number of heterojunctions. For odd values of n we have R, =R,,_ \M;;
for even values we have R, =R,,, where =1, 2,3, ... .

Calculations were carried out from Eq. (5) for a broad range of values of the
parameters of the problem. Figure 1 shows energy spectra for levels s=2,3,4 of the
hierarchy with specific parameter values corresponding to GaAs/GaAlAs superlattices:
Vv=0.01 au, m,=0.07my, m,=0.09my, w=75 au, b=50 au, and either
B1=-—0.04 a.u. (for Fig. 1a) or 8,=—0.06 a.u. (Fig. 1b). The impurity planes are at
the centers of the barriers. We can generalize certain features of these spectra.

1. Analysis shows that the energy spectra of this hierarchical superiattice are largely
determined by the spectra of the one- and two-barrier tunneling-resonance structures
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from which the superlattice is constructed. For example, it follows from the calculations
that a hierarchical modulation can arise only if there is a resonance in the interval [0,V]
in a one-barrier structure. Otherwise, the impurities do not have a sufficient effect on the
spectrum of the superlattice.

2. These spectra are clearly of a triad nature, by which we mean that they consist of
three groups of bands, with the distance between groups being much larger than the
distance between the bands within a group.

3. The number of bands in the energy spectra depends on the values of the param-
eters. For the values corresponding to Fig. 1a (at these values, the quantum well of the
two-barrier tunneling-resonance structure without impurities has a single resonance), the
outermost groups have one band each. The total number of bands at each level of the
hierarchy, N=2°+1, is equal to the number of elements in a cell of the superlattice, i.e.,
2%, plus one additional band which is due to impurity states in the barriers. The number
of bands in the central group is equal to the number of elements A (which do not have
impurities) in a cell of the superlattice, i.e., 2°—1.

4. As we move to a higher level in the hierarchy, we find a decrease in the total
width of the allowed energy bands within each group of bands.

5. The positions of the two outermost groups of bands depend strongly on the
strength of the §-function potential, 8. As 8 is raised, the bands shift down the energy
scale (so that some of the bands may descend partly or completely into the below-barrier
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region). The situation is different for the central group of bands. This group is determined
fairly rigidly by the resonance lines of the quantum well of the two-barrier structure in
their vicinity. Its position depends weakly on 3. At the parameter values corresponding to
Fig. 1, the resonant energy in the two-barrier structure is £,~0.004 a.u.

6. The widths of the bands depend on the strength of the 3-function potential. For
the s=2 level, this dependence is extremely strong. The widths of the allowed bands
reach their maximum values at a certain value of B, and they decrease as B deviates
from B, . For the higher levels in the hierarchy, the 8 dependence of the band widths
weakens considerably. The width of the central band, which (as mentioned above) is
rigidly tied to the resonances of the quantum well of the two-barrier structure, is much
greater than the widths of the outermost bands.
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