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The theory of Brillouin light scattering in metals by conduction electrons which
interact with acoustic phonons and impurities is developed. Effects of the

surface and the Coulomb interaction of carriers are taken into account. The self-
consistent electron-phonon interaction changes the electron-hole
contribution—the wide relaxation continuum appears with the temperature-
dependent collision frequency. The sharp peaks in the cross section arise due to
excitation of the bulk longitudinal phonons, the bulk transverse phonons,

and the surface Rayleigh phonons. The contribution of the bulk phonons reflected
by the surface has the form of a narrow continuum with a sharp maximum

for the slipping phonons.

1. The role of phonons in the inelastic light process in insulators has been studied
extensively both theoretically and experimentally’~* (see also Refs. 2 and 3). The scat-
tering in this case is induced by the dielectric permittivity fluctuations associated with the
lattice vibrations. As was found experimentally in HTSC,*~® the inelastic light scattering
is virtually independent of the frequency transfer in the range 0=10"-10* cm™". This
background was explained by the electron-impurity interaction” and by the electron—
phonon interaction.'’ In Ref. 11, the phonon resonances were studied in the approxima-
tion in which one phonon group scatters the light and the other interacts with the elec-
trons. In all those papers the distribution of the incident light and scattered light in a
metal was disregarded. We shall show that the distribution is especially significant.

The Green’s function method used previously for studying the inelastic light scat-
tering in normal metals and superconductors’™'? is very cumbersome for boundary-value
problems. However, the problem under study for a normal metal is essentially semiclas-
sical because the momentum transfer is smaller than the Fermi momentum, and because
the energy transfer is smaller than the interband transition frequency. We develop a new
method using the Boltzmann equation with appropriate boundary conditions. This
method was used in Ref. 13 for studying the Raman light scattering with the exitation of
plasmons. In this paper we focus on the effect of the surface in the electron—phonon
interaction, taking into account the metal anisotropy.

2. The microscopic Hamiltonian describing the inelastic light scattering has the form
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where fp(r,t) is the operator of the electronic density fluctuations, A“)(r,f) and A®(rf)
are the vector potentials of the incident and scattered waves, and vy,4(p) is the vertex

factor
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Here ') and w® are the frequencies of the incident and scattered light, f is the index of
a band in which carriers exist, the sum is over all zones n, and p;, is the electron
momentum matrix element. We introduce

w=w'"-0", k=KkK"-k", (3)

where s denotes the vector components along the surface. The cross section calculated by
using Eq. (1) can be expressed in terms of the correlator

Kye (6 vt ) ={(n u(r,0) 8, (r' 1)), (4)

Here ((...)) denotes the statistical average. The density fluctuation

d*p
5ny(r,t):2 J W y(p)fp(l',f) (5)
is modified by the factor ©p)=e'’ ¢}’ v,5(p), where the complex parameters ¢!’ and
e‘B‘" are defined by matching the field in the metal to the incident field and the scattered
field in the vacuum.'

We assume that the metal occupies the half-space z>0. In order to calculate the
Fourier transform of the correlation function (4) with respect to the coordinates parallel to
the surface s-s’ and with respect to the time r—¢’, we use the general fluctuation-
dissipation theorem:

2
ki .z,zjw)=7+———=-Im a(k;,z,z";w), (6)
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where « is the generalized susceptibility
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0
to the external field
AV DA (r ) =U(r,t)=U(k, ,z;0)exp[i(k, s—wr)]. (8)

If the frequencies '’ and w'*’ are in the normal skin range, the external field will
be

U(k,,z;w)=exp(ilz), 9

where {={,+i{, is the sum of the normal components of the incident and scattered light
wave vectors in the metal, which depends on their polarizations.

3. We derive the generalized susceptibility by means of the Boltzmann equation
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where we use the collision integral with the impurities and phonons in the 7 approxima-
tion. The interaction of electrons with the external field and the accoustic phonons is
taken in the form

(p,r,0)=ey(p)+ y(PIURE) + N (pluylr,o), (11

where the last term is the deformation potential. In the typical case the phonons are in the
equilibrium state. The collision integral vanishes due to the local equilibrium electronic
distribution function f,(e(p.xr,t) — x). The Boltzmann equation (10) can be linearized by
the substitution

dfy
folr.t)=fyle(p,r,1) M)+E5fﬂ(l‘,1). (12)

The chemical potential is determined by the conservation of electronic density. As a
result, the vertex factors ¢(p) and A, (p) in (10) are renormalized:

YP) = ¥(P) = (¥(P)/(1), NP =Nl p) = (Ni(p))/(1), (13)

where the brackets denote the integration over the Fermi surface

B ds
<...>_zf () Gy

The electric field E(r,w) represents the electron—electron interaction. For the self-
consistent determination of the field we use the Maxwell’s equation.

The acoustic phonon field obeys the elastic equation

Fuy(r,w) R ad d'p
—pw ur,w)=

L v 2 Fell BT N p)f,(rm), (14)

where p is the density of the metal. The last term describes the electron response to
phonons. '

We apply the specular boundary condition for Boltzmann’s equation (10). Conser-
vation of the tangential components of the electric and magnetic fields implies the bound-
ary conditions at the surface z=0 for Maxwell’s equations. The boundary condition for
the elastic equation (14) means that the normal stress tensor components vanish:

uyr,m)
ixlm T =0 for z=0". (15)
To solve the above equations, we use the even continuation to the z<<0 half-space
for U(K, ,z,w) for the components of the electric field E (K, .z, w) parallel to the surface

and for the elastic displacement u (K,,z,w). For the perpendicular components
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F.(k,.z.w) and u.(k,.z.w) we use the odd continuation. Hence we can use the Fourier
transform with respect to all coordinates, and we find the solution of Boltzmann's equa-
tion.

The singularitics at z=0 arise in the equations describing the phonons, (14), and in
Maxwell’s equations after the continuation. Thus the additional terms appear in the Fou-
rier transforms of the equations with respect to the z coordinate. This surface contribution
must be determined from the boundary conditions. In the Maxwell’s equation such terms
give the surface plasmon contribution.'" These terms are omitted here.

The Fourier transform of (14) gives

(}\/r/\/m k/\' /(mgpu)2 5zv/)ul k (1) fu(k w +k(y Cu(k\ 'w)* (]6)
where

. . : )\1/\' }\/m

f,'(k,w):*1(7(p))\,,\(p)>kk U(k,w)w<w kk k,,,u,(k.w). (17)

For the sound frequency range |w|=w; < vk, where w,, is the Debye frequency. Only the
main contribution with respect to w/vk was kept in the first term on the right side in (17).
The main contribution is real in the second term and renormalizes the sound velocity.
Therefore, the next-order term of the serics expansion is retained in it. It is imaginary and
gives the sound damping."

The last term in (16), where there is no sum over the Greek symbol «a, appears as a
result of the singularities at z=0. The quantities C (K, ,w), which do not depend on %.,
are determined by the condition (15):

dk.
C,(K,.w)=D,;(K 0\ ,f ﬁD;’,‘,(k,w)fk(k,w)k,,,, (18)

where DJ;(k,w) is the bulk Green's matrix for Eq. (16). The surface Green's matrix
D (K, ,w) for the boundary condition (15) is determined by the equation

dk
> DK o)\, fﬁ D! (k.wk, k, e*"=—5, for z—0". (19)

[24

Thus we obtain the solution of the clastic equations (14) and (16). Using the solution of
the Boltzmann equation (10), we find the generalized susceptibility (7) and we calculate
the cross section.

4. The scattering cross section has the form

do=

8me? 0 S(k,,w) kU 0"dedQ
) : (20)

mchew'”l 1—exp(—w/T) c(2m)?

where E(k,,w) contains the electron-hole (e—h), the phonon bulk (ph—b), and the
phonon surface (ph—s) contributions.

The electron-hole contribution (the background in Fig. 1, where only the Stokes
range is shown) has the form
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dk, 2
Ze-p(ky @)= —1m f — |U(k,w)|3<M>'
2
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For an isotropic 7 and in the limiting case /|{|<1 (I=v7), this expression takes the

form

wT

Zenks0)=ommry (v (22)

Note that ¥{p) is renormalized, (13). The frequency dependence =._(k, ,w) was obtained
in Ref. 9 for the electron-impurity interaction. For a higher temperature 7 ' is determined
by the electron—phonon interaction. If the frequency transfer (or temperature) is larger
than wp/3, we have 7 '=2mgw,, (or 27gT). Here g is a dimensionless constant of the
electron—phonon interaction (concerning the coefficient 3 and the definition g see Ref.
16). For a low temperature and a low frequency T,|w|<wj, the scattering rate
7 '=gwp max (|o’,T%). These results concerning the electron—phonon interaction differ
slightly from those obtained in Ref. 10, where the factor violates the sum rule.

The bulk phonon contribution is

Sonon(Ke @)= —~Im 2 (y*(P)\oalP))
af

dk, ,
X<7(P))\33(P)>f ﬁ IU(k,w)|" D[;ﬂ(k’w)kakﬁ’
where it is assumed that the coordinate axes are the symmetry axes of a crystal in which

the tensor (p)A;(p)) has a diagonal form. The Green’s matrix Dzﬁ(k,w) introduced
above has poles which determine the bulk phonon dispersion.

Let us consider ,_y(k,,w) in the typical case

s
" ¢y min ({;,L,1)<{,<{,
for normal incidence and normal scattering. The integral (23) gives
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where s, is the longitudinal sound velocity. This expression has the form of a peak at
|w|=5,¢,, whose width is s,{- . In the opposite case, {;<{,, the peak broadening prevents
its observation. A comparison of (22) and (24) shows that the ratio 2"V /2 ={,/{>. The
nonperpendicular incidence and scattering also include the transverse phonon peaks
whose height is proportional to k7 and is on the order of the longitudinal phonon peak.
The peaks are located at |o|=w, (k,.k.={)).

Eph h((l) = Sign w, (24)

The surface contribution is

S ons(ky . w)=—Im 2 D} (K w)\..pp 15 (K, ) (k. o) (25)
with

l,y(k;,w):E <¥(p J —U k,w)D" (k,w)k, k,. (26)

ya
Y

The surface Green's matrix Dj; (K, ,w) has a pole which is defined by the Rayleigh
dispersion of the phonons, |w|= wg(k,). There is a corresponding peak in the cross
section whose shape is

T<y(pr..(p)>]?

% ps([w]— ox(k) T+ 1)

(ki .w)= sign w. (27)

ph s

Here and in (28) the coefficients are given for the isotropic case and for |{|>k,. The
sound damping [" obtained from the last term in (17) is

S
I'=rw> for kI<1 and F:;]w| for ki>1.

In addition to the Rayleigh pole, there is the imaginary part in (25) in the range {o|>s k.,
where the bulk transverse phonons can exist. Here the imaginary part has the shape of a
narrow continuum. In the range |w|>s, k, the bulk longitudinal phonons also exist. The
slipping longitudinal phonons produce a nonsymmetric (Fano-like) resonance, whose
shape has the form

K< ypn.(p) =] siTik, "7
psi O3 (| =5, k)7 +T7

2
3 (k,,w)=

s sign o, |w]>sk,.

(28)

The resonant phenomena discussed here occur at low-frequency transfer. The relax-
ation continuum is in the wide frequency range.
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