Side branching in the three-dimensional dendritic growth

E. A. Brener
Institute for Solid State Physics, Academy of Sciences, 142432 Chernogolovka, Russia

D. E. Temkin
Institute of Physical Metallurgy, 2 Baumanskaya Str., 9/23, 107005 Moscow, Russia

(Submitted 21 April 1994)
Pis’ma Zh. Eksp. Teor. Fiz. 59, No. 10, 697-702 (25 May 1994)

The time-dependent behavior of side branching deformations is considered with
allowance for the actual nonaxisymmetric shape of the needle crystal. It is

found that the amplitude of the deformation increases faster than that for the
axisymmetric paraboloid shape of the needle. It is argued that this effect

can resolve the puzzle that the experimentally observed side branches have much
larger amplitudes than can be explained by the thermal noise in the

framework of the axisymmetric approach. The coarsening behavior of side
branches in the nonlinear regime is discussed.

We have studied the problem of a free dendrite growing in a one-component
undercooled melt.! The control parameter is the dimensionless undercooling
A=(Ty— Tx)cp/L, where T, is the melting temperature, L is the latent heat, and Cp is
the specific heat. The temperature profile satisfies the diffusion equation with the inter-
face moving at a normal velocity v, and acting as a source of magnitude v,L/c,. To-
gether with the Gibbs—Thomson condition at the interface, it leads to a rather compli-
cated integrodifferential evolution equation.

The steady-state version of this problem was discussed in Refs. 2 and 3. The den-
dritic tip with the radius of curvature p moves at a constant velocity v. The Peclet number
P=pv/2D (D is the thermal diffusivity) is related to the undercooling A by the 3D
Ivantsov formula,® which for a small A is P(A)=—A/In A. The stability parameter is
o=dy/(Pp)=oc*(a), where dy=yTy, c,,/L2 is the capillary length proportional to the
isotropic part of the surface energy 7y, and « is the strength of the crystalline anisotropy.
The function ¢*(a) is given by the 3D selection theory2 and o*(@) = o™ for a small a.
These two relations for P and o determine both v and p. The interface shape near the tip
is close to the Ivantsov paraboloid and can be described by the equation
2(r,d)=—~r>/2+3ZA,, r" cos(m¢), where the amplitudes A,, are given by the 3D se-
lection theory” (we measure all lengths in units of p and time in units of p/v). In the tail
region the interface shape deviates from the Ivantsov paraboloid: Four well-developed
arms (for cubic symmetry) are formed in the cross section. For a small A, not too far from
the tip, this shape can be described as®

1/5 2/3
Y(x,z):(5|2l3)2/5(0—*) (i) L ()
O'Ek Xiip X/xgip 533 ;/l —s*

where the tip position of the arm is xlip(z)=(5|z|/3)3/5(0§"/a*)”5. The function o3 () is

given by the 2D selection theory and the ratio o3 (a)/c*(a) is independent of a in the
limit of small «.
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The description of the side branches requires the solution of a time-dependent prob-
lem for the perturbation around this missile-shaped, steady-state crystal z={(x,y).
Langer et al>’ suggested that dendritic side branches might be generated by a selective
amplification of a very small, noisy perturbation near the tip of a growing needle crystal.
It appears that realistic side branching behavior might be produced by purely thermal
fluctuations in the solidifying material. The side branching deformation is described in
Ref. 7 as a small (linear) perturbation moving on a cylindrically symmetric needle crystal
(the Ivantsov paraboloid“). The noise-induced wave packets generated near the tip grow
in amplitude, spread, and stretch as they move down the sides of the dendrite, producing
a train of side branches. In the linear approximation, the amplitude grows exponentially
and the exponent is proportional to |z|"*. These results are in approximate qualitative
agreement with the available experimental observations,™” but experimentally observed
side branches have much larger amplitudes than can be explained by thermal noise in the
framework of the axisymmetric approach.” This means that either the thermal fluctuation
strength is adequate to produce visible side branching deformations or agreement with
experiment would require at least one more order-of-magnitude exponential amplification
factor.

The main goal of this paper is to describe the side branching problem, taking into
account the actual nonaxisymmetry shape of the needle crystal, defined by Eq. (1). We
will show that for this nonaxisymmetric shape the perturbations increase faster than for
the axisymmetric shape. This effect allows us to remove the above-mentioned discrep-
ancy between theory and experiment.

As in the Ref. 7, we assume that the perturbation is small and consider its evolution
in the linear approximation. Therefore, the first step in this analysis is to linearize the
evolution equation about the steady-state solution. For the investigation of the behavior
of a noise-induced wave packet as it moves along the dendrite it is important to know the
Green’s function of our linear problem. According to Ref. 10, the Green’s function is
given by a path integral

1 X Y
G(X,Y,t,X’,Y’,t'):J exp[f Q(x,y,k k. )dr—i J k,‘.dx—if k‘,dy]
' : X' Yy

XD{x(7)yD{y(T)}D{k (7)}D{k.(7)}. (2)

Here the functional integration is performed along all the trajectories x(7), y(7), k.(7),
and k,(7) which start at the point x=X", y=Y" at 7=t and go to the point x=X, y=Y
at 7=t.

The expression for the Green’s function is of the Feynman type, but with the action
! X Y

S:J’ Q(x,y,k.\,,k‘,)dr—if k".dx—if k.dy (3)
I : X' v’

written in the Hamiltonian form rather than in the Lagrangian form. In this representation
all important information about the problem is contained in the local dispersion relation
Q(x,y.k,.k,) of the linear operator. In the WKB approximation the functional integral
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can be calculated by the method of the steepest descent, where the Green’s function
behavior is determined by the extremal trajectory which is governed by the Hamilton
equations

de 90 dy a0 dk, 0 dk, o0

= A =; — — 4
dr ok, dr ok, dr ax dr ' dy @
Thus, the Green’s function is G ~exp(S,,,) and the problem reduces to the solution of the
Hamilton equations for the given Hamiltonian function ((x,y.k,,k,).

The important point is that the local dispersion relation for this solidification
problem is the well-known local Mullins—Sekerka spectrum. Let us replace the interface
of the needle crystal in the vicinity of the arbitrary point x, y, z={,(x,y) by a piece of the
tangential  plane. For the short-wavelength  perturbation of the form
Sn~exp(dt—ik.s—ik,u), the local Mullins—Sekerka spectrum is

Q= kI +k, [cos @ —o(ki+k)]+ik, sin ©. (5)

Here ® is the angle between the z axis and the local normal n, k., and k, are the
components of the wave vector along s and 1, and s and & are the unit orthogonal vectors
in the tangential plane. The unit vector s lies in the tangential plane and in the normal n,
z plane.

The spectrum (5) is presented in the local orthogonal frame of reference n, s, u. It
is convenient to rewrite it in the fixed Cartesian coordinates and to obtain the spectrum in
the form Q(x,y.k k).

The main restriction of our calculation comes from the fact that any further analyti-
cal progress can be reached only for small values of y, i.e., near the tip of the main arm
in the cross section. In this region the unperturbed interface of the needle crystal, which
is given by Eq. (1), can be written as follows:

y* y
5 s sl (©)
(512"

X

(512" -

Here we omitted the factor [o3 (a)/o*(a)]" in (1) which is very close to 1.

The actual values of k,(7)~ y(7) are small in the region of small y. For small y and
k, we can expand the function } to the second-order terms:

Qx,y.kk,)=Q(x,k,)+ 5 Ay?+Byk, + 1 Ck;. (7)

Here €}y, A, B, and C are the functions of x and k, only. Straightforward but tedious
calculations give for x>1 (or |z|>1) the equations

— ik, okl i
Q= I+i —+—], (8a)
o p(} po
b’k,[ 3okl 2i
A=—1+ +—, (8b)
pu po po
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b| 3okl
B=——1+—+—/|, (8c)
p(} [)U p(l
1 3ok;
C=—1+—|, (8d)
ky po

where p,=(d{,/dx), -, and b:(ﬂzg,,/ﬁyz)y:“. These equations are derived for an
arbitrary profile with an extremum at y=0 and they are valid for |p,|>1. For our profile
[Eq. (6)] we have p,=—x>"" and b= —2x"",

We would like to find the optimal trajectory, i.e., the four unknown functions x( 7),
v(7), k(7), and ky(T) which are governed by Eqs. (4), (7), and (8) and by four boundary
conditions: x(0)=X"=0, y(0)=Y'=0, x(t)=X, and y(t)=Y. To accomplish this
goal, we use the following iterative strategy:

i) The first step is to solve these equations for the case y(7)=0 and k,(7)=0. This
gives the trajectory x(7), k,(7) along the ridge of the side arm.

ii) The second step is to find y(7), k,(7) for the fixed functions x(7) and k(7)
given by the first step.

iii) Finally, we find the corrections to x(7), k.(7) due to the functions y(7), k,(7)
given by the second step.

After a lengthy calculation, which will be published elsewhere,'!' we find the action
for the optimal trajectory

2(5/3)19/1()} v 3 3 3/5 (f_|Z|) 3 3 ()/S(I_Iz|)2
S(ZY. ) == |75 1 i—( ) ( )

3\’% al5 |Z|3/S T g\s |Z[6/5
9 (347 Y* 3a [3V7° YHe—|Z))
—z(g (“_’/9_1)|z|4/"7(§) —W*] ©)

where a=0.039.

After the calculation of the action § at the optimal trajectory we can write the
Green'’s function as G~exp(S), where the prefactor comes from the functional integration
over the space near the optimal trajectory. The noise-induced correction &,(Z,Y,f) to the
interface shape [the profile is described by the relation X=X ,(Z.Y)+ £ (Z,Y,1)] is given
by the general relation

t

§I(Z,Y,t)=de’dY’j dt'G(Z.Y 1.Z2"Y ' \yp(Z',Y" 1), (10)

where 7 is a stochastic field of the noise at the interface. Formally, # is the inhomoge-
neous term in the linear equation L £, = n, where L is a linear operator which has the local
spectrum (5) and the Green's function G.

The appropriate procedure for introducing thermal noise was described in detail by
Langer.” Following this procedure, we find the root-mean-square amplitude for the side
branches generated by thermal fluctuations
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9/3 4/5 Y?_
1——(—) (\/l—i/9—l)|Z|—4/5H, (11)

2(5/3)9/10
4\5

(E(Z,YN'2~0 exp{WIZIM

where the fluctuation strength Q is given in Ref. 7, and Q_2=2kBTzc,,D/(L2vp4). An
estimate for the double-point correlation function at the points (Z,,Y=0), (Z,,Y=0)
gives for Z,=Z7,=7

(&1(Z,,0)£,(Z,,0))

. 2m(Z,—Z>) Z,—Z,)°
=(£1(Z1,0))(£](25,0)) " cos| ————exp| - 2z i (12)
where
5 3/10 3 3/10
1324(3) Golz)*s, )\=27-r(§) Galz|s. (13)

Equation (11) describes an increase in the amplitude with increasing distance from
the tip |Z|. This amplitude increases exponentially as a function of (|Z|*°/a"?). At a
fixed distance, |Z| =const, the amplitude decays slightly and oscillates with Y. The im-
portant result is that the amplitude of the side branches for the anisotropic needle in-
creases faster than for the axisymmetric paraboloid shape. In the latter case it increases
exponentially as a function of’ (|Z|"#/a"%). We think that this effect can resolve the
puzzle that experimentally observed side branches have much larger amplitudes than can
be explained by thermal noise in the framework of the axisymmetric approach.” Agree-
ment with experiment would require at least one more order of magnitude in the expo-
nential amplification factor. Indeed, we find that for experimental values of ¢=0.02 and
|Z|, where the first clear side branches can be seen,” the ratio of the amplification factors
for the actual anisotropic shape and the parabolic shape is

7 for |Z|=7

exp(Sanis,)/CXp(SParab.) = 11 for |Z‘ =9

The correlation length (or the width of the wave packet) /. and the side branch
spacing N predicted by (13) depend on the distance from the tip |Z|. These dependences
are slightly different from those predicted by the axisymmetric method,” but the differ-
ence is not as crucial as the difference between the amplitudes which increase exponen-
tially with |Z|. For example, at the experimentally relevant distances |Z|=(7-9), where
the first clear side branches can be seen, the spacing predicted by (13) is A=2.0, which is
in approximate agreement with the experimental observations and with the spacing pre-
dicted by the axisymmetric method.”

Far from the tip the side branching deformations grow out of the linear regime and
eventually start to behave like dendrites themselves. It is clear that the branches begin to
grow as free, steady-state dendrites only at a distance from the tip on the order of the
diffusion length, which in turn is much larger than the tip radius p in the limit of small P.
This means that there exists a large range of Z, 1<€|Z|<€1/P, where the side branches grow
in a strongly nonlinear regime, but do not yet behave as free dendrites. We can think of
some fractal object in which the length and thickness of the dendrites and the distance
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between them increase according to certain power laws with the distance from the tip |Z|.
The dendrites in this object interact due to the competition in the common diffusion field.
Some of them die and some continue to grow in the direction prescribed by the anisot-
ropy. This competition leads to a coarsening of the structure in such a way that the
distance between the survived dendrites, A(Z), is adjusted to be of the same order of
magnitude as the length of the dendrites, /(Z). The scaling arguments similar to those of
Ref. 12 give N(Z)~1(Z)~|Z|. The whole dendritic structure with side branches looks
like a fractal object on the scale smaller than the diffusion length and as a compact object
on the scale larger than the diffusion length.'? The mean density of a solid phase in the
compact structure is equal to the undercooling A.
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