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The splitting and the nonomnigenous nature of the drift surfaces of charged
particles in mirror magnetic confinement systems are shown to result from a
disruption of the mutual orthogonality of the magnetic lines of force and the
lines of B = const on magnetic surfaces. A condition for orthogonality of the

field geometry is derived.
PACS numbers: 52.55.Ke

The splitting! =3 and the nonomnigenous nature®* of the charged-particle drift
surfaces in axially asymmetric confinement systems with magnetic mirrors determine
the transverse transport rate of the plasma®”’ and the conditions for MHD equili-
brium.® These aspects of the drift surfaces can be analyzed from a common stand-
point by associating these effects with certain metric characteristics of a natural co-
ordinate system which is determined by the lines of force and by the distribution of
the modulus of the field B in the plasma confinement region.

We will restrict the present paper to the case in which there is a single minimum
of B on each line of force which penetrates into the confinement region. We con-
sider the surface of minimum BBg(x) = 0 (the subscript “s” denotes differentiation
along the field direction). The family of magnetic lines of force that cross the closed
curve B= B, = const, which lies in the surface B(r) = 0, forms a magnetic surface
which we adopt as the coordinate surface £! =const. We adopt the intersections of
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the magnetic surface with the surfaces of constant mirror ratio R(r) = B(r)/B, = const
as the coordinate lines £2. Obviously, we have £2B = const on the lines. As the co-
ordinate lines £ we adopt the field lines on the magnetic surfaces §' =const.

The Larmor center of a particle with a magnetic moment p=mv? /2B and with
a zero longitudinal velocity v|;=vB/B =0, which is at the field minimum B,;, =B,
on the magnetic surface £ = const, does not leave this surface; it drifts along the line
of minimum B=B, =const. This feature of the drift of a particle with v;;=0is an
obvious consequence of the conservation of the total energy, mv?/2, and of the mag-
netic moment p. If vy, the drift velocity normal to the magnetic surface £! = const,
is equal to zero everywhere in the particle confinement region, then the Larmor cen-
ter drifts along the surface £! = const and does not leave the surface even if v #0.
In other words, the drift surfaces do not split, and they are omnigenous. In the op-
posite case, the Larmor center of a particle with vj; # 0 leaves the magnetic surface.
If v, #0, but if the displacements of the Larmor center normal to the magnetic sur-
face cancel out exactly over one period of the motion between the bounce points
(over one bounce period), then the drift surface turns out to be split, but its average
position again coincides with the magnetic surface, so that the drift surfaces remain
omnigenous. If the normal drift does not cancel out over a bounce period, then a
displacement of the Larmor center with respect to the magnetic surface builds up and
leads to an intersection of drift surfaces with different pitch angles. In other words,
the drift surfaces are not omnigenous.

It follows immediately from the drift equation in the form?®
vy = b[vII - (vﬁ /o Nb-rotb)] + (v”/ wc)rotv”b

that the drift velocity normal to the magnetic surface, vy, may be written
Vi = (v”/wt,)N-rotv”b, (H
where N is the initial outward normal to the magnetic surface, w, is the cyclotron

frequency, and b= B/B. If rotB=0 and V¢, where ¢ is the electrostatic potential, we
find, after some straightforward calculations,

vy = (m wCB)(uB‘rmvﬁ B/ ctg 8, (2)

where @ is the angle between the magnetic line of force and the line B=const
(0<<8 <r) on the magnetic surface. We see from this expression that we have
van =0 if the coordinate lines 2 and £, which are formed by the lines B = const and
the field lines, respectively, on the ¢! = const magnetic surface, are mutually ortho-
gonal, ie.,if 8 =n/2. We will label a magnetic configuration having this property as a
“magnetic configuration with an orthogonal field geometry.” It follows from our
discussion that the set of configurations with an orthogonal field geometry constitutes
part of the set of configurations which have omnigenous drift surfaces in which
6 #m/2 and, correspondingly, vz # 0, but for which the displacement Ay of the
Larmor center with respect to the magnetic surface £' = const, averaged over the
bounce period, vanishes, i.e.,
Ty
By= (T ] vgydt = 0. 3)
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For example, a simple mirror system with an auxiliary axial conductor which causes
the lines of force to spiral in a helix, or the magnetic field of a tokamak, does not
have the property of orthogonality, while it does have omnigenous drift surfaces.

To find the orthogonality condition, we write the contravariant component of
rotB=0:
rot'B = (1/+/g)(:3B5/ 3%%) — (8B2/ 3E%)] = O, 4

where g is the determinant of the metric tensor g;;. Using cosf =g23 /\/822833,
B, =(823/V833)B, B3 =\/g33) B, 8B/8£* =0 and divB= [(1/\/5)8(3\/4?—/\/5’33)/653]

=0, we find

avVz32/08 = (V2/V/Z33)(8 38 NVE2 2835 c0s0/\/2) - (%)
If
£33 =ga3(E', £%), (6)

i.e., if the component gs3 is constant on the lines of 2 or, equivalently, on the lines
of B=const, then we have d+/g33/0£% = 0 and, correspondingly,

cosf = C(E‘,Ez)\/E/M- Q)

It follows from (7) that if we have cos@ = 0 anywhere on a line of force then under
condition (6) we have cosf =0 on the entire line. Condition (6) is equivalent to

B = BS'(SI,SS)- )]
Here B;=b - VB=b"0B/3t =03 dB/d&> =(1/\/g33 (OB/[0£®), since b* =h? =0 and
b® =1/r/gs3. On the lines of £2, however, we have B = const, so that condition (8)
also holds if (6) does. Let us consider the unit vector t tangent to the line B = const
on a magnetic surface. Obviously, we have t - VB=0 and, by virtue of (8),

t+ VB;=0. Consequently, we can write t=AB X By, where \ is some scalar. If
cosf =t - b=0, we find, by substituting t,

(VBXVB/)b =0, )
which is a necessary condition for orthogonality of the field geometry. Using the

identity VB=kB +b(b - VB) (rotB=0), where k is the curvature of the line of force,
we can rewrite condition (9) as

B =0, (10)

where the mixed derivative is evaluated along the directions of the line of force and
of the binormal to it.

It can be shown that orthogonality condition (9) or (10) is also a sufficient con-
dition.
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