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The impurity part of the magnetic susceptibility is calculated as a function of the
magnetic field in the symmetric case. An exact solution of the Anderson model,
which describes the formation of localized magnetic moments in a metal, is used

in the calculation.

PACS numbers: 75.10.Jm

1. The formation of a localized moment in a metal is customarily studied using
the Anderson model I:

Ha= T, Choho TV I (Chod, tdye )t Deydid, Udydydyd,, (1)
o=1 k.o a

where €4 is the location of the impurity level with respect to the Fermi level, U is

the Coulomb repulsion of electrons which are localized at the impurity center, and

the amplitude V describes the tunneling of impurity electrons into the conduction

band. We know that in the limit I'= 7 p(eg)V? <<min (€4, €4 + U) the impurity has

a magnetic moment and is described by the Kondo Hamiltonian.?

It was shown in Refs. 3 and 4 that the Anderson and Kondo Hamiltonians are
fully integrable and are diagonalized exactly. In this letter we are reporting the re-
sults of magnetic susceptibility in an arbitrary magnetic field for the symmetric case
€z + UJ2=0. The precise ground-state energy was calculated in Ref. 5.

2. The energy levels of the Anderson Hamiltonian, which are in relatively close
proximity to the Fermi level, can be determined from the following transcendental
equations:
glkj)— A, +iUT kj—eq +il

M
exp(ik,L)= Il = S :
pUkL)= 1L glk) — A, —iUT kj ~eq —il

)

Noogki)— A —iUT M A, A+ 20T
i=1 glkj)~ A, +iUT
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8=1 Ag —Ag — 20T ®

where
U 2
glk)=(k — 3 - ey)"s

Here WV is the total number of particles, L is the size of the system, and the number
M =N/2-S7 is related to the total-spin projection. The energy of the system is

N

E= Z Kk,
=1
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3. Kawakami and Okiji® have shown that at U>> 0 a part of the charge excita-
tions &; in the ground state forms “bound” states with spin excitations
gk )=A,* iUT, 4)
In the thermodynamic limit in which N,L,M —e N [l =¢p/m and M/L remain
finite numbers of A, and the “unbound” numbers k; (j=M+1,. .. N) are distri-
buted continuously over the intervals(-Q, €% ), (-e, B) with the densities o(A) and
p (k), respectively. Thus equations (2) and (3) yield linear integral equations for the
o{A) and p(k) distributions:

1 + oo
plk) = —- +/w S(k)+2k [ a,(k®— A)o (AMA - (5)
=T Q
oo - 1 1 i
o(A)+ f a,(A — A Yo (A)YdA + f ay (A - kplkjdk = f a,(l\»g kz)(g— + )S(k?dk
- Q iy .
©)
where
1 n 1 r
a"(XJ—z—r}?:?(U—sz’ 3(k) = ar (ke )2+I‘2)
but B and Q are defined by the conditions
| B F B
SZ/L = —7f o k) dk; NIL=2[ o(AdA + [ p(k)dk. (7
<7 F - Q - E[:
The ground-state energy with a given S? is given by
B f o
E/L = [ kp(kjdk + 2] Re~/A+iUl 6{A)dA.
. ‘o ®

In the diagonalization of Hamiltonian (1) we took into account only the states
near the Fermi level and only the linear part of the conduction-electron spectrum,
which is justifiable for U I'<<eg. This leads to the fact that 6 (A)~A™* 12 and
p (k)=~1/2m in the momentum region far from the Fermi surface, i.e., in the limit
A—>+oo, koo and the integrals in Eqgs. (7) and (8) diverge. These integrals must
therefore be cut off for the momenta of the order of e, but all the integrals in Egs.
(5) and (6) converge, and incorporation of the finite band width gives small correc-
tions on the order of / UT fep << 1.

In the symmetric case 2¢4 + U=0 we have the limit Q =<, and if $% =0 we have
the limit B=o0

The ground-state energy and charge susceptibility of the impurity were calcu-
lated in Ref. 5 for the symmetric case. Equations (5) and (6) were also solved nu-
merically in Ref. 5.

4. The impurity part of the magnetic susceptibility can be easily determined
by using the following procedure. Since the equations (5) and (6) describe the free
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electron gas in the leading order in 1/ L, S* =H/4er (we assume that g7 ug =1). This
condition correlates the parameter B with the magnetic field H. The impurity
moment is now determined by the densities p and o, i.e., by the solution of Egs. (5)
and (6) whose right-hand sides have terms with the coefficient 1/L.

Equations (5) and (6) with arbitrary sign of B are solved by the Wiener-Hopf
method. After dropping ¢(A) in Eq. (5) we have
B 1 bee i 1
plk)+ 2% [ R(K* —p*)o(p)dp = —— + -— 5(k)+2kf R(k* —p*) — + —&(p) dp ,
2 2n L

3 — oo

where ©)

Rix) = —1——f cos (wx)1+e“) dw.
T e

For B<0 (H<H =const \/?/T)

A,._{J__ = ;e_"bz Qn*1) G(—im (2n+1)

— 10
VUT' = w(an + 1P (10

where G (21w) = (iw/e)’ /2 [T'(%.+iw) is the analytic function in the lower half-
plane, and b=B/y/2UT". Note that b depends solely on H//UT and is independent
of ep. Equation (10) is valid for H <H¢, where Hc is determined by the same equa-
tion for B=0.

The magnetic moment of the impurity is given by

+ om ~mr?(2n+1)

_ 1 7 G (imQn+l)) | . Tl
M*mpzMKondo{-_F’_ y o AT rrb’(Zn ‘)f re YT 6(”}’

N2m on=0 I+ 1 -
(11)
where
X +e d ,

4g Kondo G (w)e” iw(b?— (U-417%)/8UT) ___~ 12)

2\/_‘7? °° w ~ 0 2ch /

Equations (10)-(12) completely determine the dependence of the impurity
part of the magnetic moment for H<H¢ and of the arbitrary Uand T". 1t follows
from these equations that the impurity paramagnetism vanishes as H— 0, irrespective
of the relationship between Uand I'. The ground state of the impurity is a singlet
state. The magnetic susceptibility, which is finite at H =0, has the form

‘ . oo ~mt?
2 2 N
X(0)= pr(u il 77\/ +f e 2U15(it}dt>. (13)

At U>>2I' the magnetic susceptibility is exponentially large:

1 -
X (0y = Ty = — V20T e~ Y/8T _ is the Kondo temperature (Ref. 6).

ZWTK

As U is reduced, the term M ¥°P9° pecomes exponentially small and a smooth
transition to the region, in which the perturbation theory of U/T is valid, occurs. In
this case we have x(0)=(1/2ax [1+0(T'/U)]. Four known terms of the series in
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U[7] can be determined from Eq. (13).

5. At H<<H_ we can limit ourselves solely to the first term of the series in
(10), so that b* =(1/m) In [(UT/we'/?/H]. If US>T, then the main contribution
in Eq. (11) comes from the M*°"4° term which coincides with the magnetic moment
of the impurity. This magnetic moment was calculated using the Kondo exchange
Hamiltonian.® Note that the models are equivalent only when U >>T and

HKLVUT.

For arbitrary values of Uand I' in the entire region H << Tk, Hc (see Fig. 1) the
impurity magnetization is expanded in a series in integral powers of H and the local-
ized magnetic moment is missing. For Tx <<H << H¢ Egs. (10)-(12) give logarith-
mic asymptotic forms which are well-known in the perturbation theory of I/U 2
For

pooT
H=H = e —— . 14
¢ e o Ty v 4

6. If H=H(B>0), we derive from Eq. (9) the expression

+

gL e G () f Rk s
ur T oo @t o
and
. iwk?
: i d LB PRI
MImos ] e P @ fe T bk ak. (16)
-0 W T °

At H>>H the magnetic moment of the impurity is expanded in powers of max
(I'/ U)/H. 1In the regions U>>1I" and I">> U(the hatched regions in Fig. 1) the
electron in the impurity atom is nearly free. In these regions we can ignore in the
Hamiltonian (1) either the hybridization term for I' <<H << H or the Coulomb re-
pulsion for U<< H<KT, or both of them if H>> [ T'.
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95 JETP Lett, Vol. 35, No. 2, 20 January 1982 Vigman et al.

95



7. We shall consider the impurity part of the specific heat T 0 without deriving
it:
o g [rUA e _mz‘\
8UT
=z e v (i) +8(t)) e ZUrm/'
- y

(17)

Equations (13) and (17) define the function R(U [TY=4/3n* Tx/C, which, as
we know, varies (see, for example, Refs. 6, 7, and 9) in the range of 1 to 2 as U/T’
varies in the range of 0 to oo.

8. The solution of the asymmetric Anderson model and the low-temperature
thermodynamics for arbitrary values of €; will be published in the next issue of
JETP Letters.
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