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The problem of a phase transition in a square lattice of dipoles with a
dipole—dipole interaction and a fourfold symmetry axis reduces to a two-
dimensional Ising model. An exact analytic solution is thus possible.

PACS numbers: 05.50. 4- q

An example of a two-dimensional system of dipoles with a finite commutative
symmetry group is the system of surface groups having a rotational degree of free-
dom. If the number of symmetrically arranged surface atoms nearest the group is
m, the group has an m-fold symmetry axis, and a phase transition occurs against the
background of random rotational reorientations between azimuthal potential wells.

In two-dimensional systems with a continuous symmetry group, the long-range
order disappears as the thermodynamic limit is approached, while the dipole inter-
action stabilizes this long-range order.! It is thus not surprising to find that there
is a long-range order even in the specific model with a dipole-dipole interaction
which we will discuss here:

Lvnm, n+im =J| Com St im S Cum i)(en +im i/l
I3 - > (1)
L’nm, nm + ] =J1 Com " Cnm + 4 -3 Cam il (enm + 143”‘
Here J is the energy of the dipole-dipole interaction, e,,, is a unit vector which
specifies each of the four possible orientation directions of the dipole at site (nm)
of the square lattice (Fig. 1), and i and j are unit vectors along the x and y axes. We
resolve the vector e, into its components,
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FIG. 2.

Each of the four orientation directions can thus be specified by a pair of indepen-
dent components Gy, =+ 1, 03 =+ 1. Substituting (2) into (1), we find the follow-
ing expression for the complete Hamiltonian of the system:

=5+ 5,
- ] -
X o X X o Ayl X X
4 J 2o am Cntim + 2 J X Oamnm+ 1 &)
nm nm
o 1 —_ .
W7 = J ¥ a? o —~J Z o¥ a? .
2% gm nmmon+lm wm AM nm+ 1

The original system has broken up into two noninteracting subsystems, each de-
scribed by a two-dimensional Ising model, with different coupling constants within
a column (n) and within a row () (Ref. 2). Figure 2 shows the configuration of
dipole orientations in the ordered phase which corresponds to the minimum of
Hamiltonian (3). The critical temperature for the transition to this phase, T, is
determined by the equation
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from which we find kT, = 1.641J.

If the angle between the orientations e,,, and the x and y axes were different
from 45°, a term ™Y would appear in (3) and describe the interaction of the two
Ising subsystems. This discussion can also be generalized to n-dimensional square lat-
tices with 2 dipole orientations (along the principal diagonals).

1)A phase transition in a specific system, of hydroxyl groups on a silica surface, was studied in
Ref. 3.
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