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A two-dimensional scalar equilibrium equation is derived for plasmas in a
stellarator. This equation, which is analogous to the familiar equation for a
tokamak, can be used to calculate the maximum plasma pressure.

PACS numbers: 52.55.Gb, 52.25.Kn

The equilibrium, stability and evolution of a plasma of sufficiently high pressure
in axisymmetric magnetic confinement systems such as a tokamak can be calculated
by using a two-dimensional nonlinear scalar equation for the poloidal flow . This
equation can be written as follows:
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where r is the distance to the major axis of the plasma torus, p(y) is the plasma pres-
sure, and F() is the poloidal current flowing through the loop {r =const). The mag-
netic field is determined by the equation B=([v ¢y v{] + FV{)/2m, where ¢ is the
polar angle of the cylindrical coordinate system r, {, and z. For numerical calcula-
tions, it is convenient to write this equation in the flux coordinate system x' =g,

x? =0, and x® =¢ which is associated with the internal geometry of the system. In
this case ¥ = (2), and the sought-for functions are r=r(z, ) and z=z (a, 9) (the
method of inverted variables! ). The square of the length in these coordinates is
dP =ggdx'dx*: g, =r% +2%, 812 =Faro 2420, 822 =78 + 2§, £15 =823 =0, 833 =17}
&' =rgnlg g2 = -r’gy,ls g=r* (r,zg -r92,)* . The equilibrium equation (1) in
the flux coordinate system is given by
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The prime denotes the derivative of @, and a; =gz /\/g . The 0 coordinate can be
found from the condition g;5 =0 (orthogonal coordinates) or by assuming that
\Vg/r* =%(a) (coordinates with straight lines of force), or as a polar angle: r=R
-p(a,0)cos 8, z=p(a, 0)sin 0, and so on. In the third case Eq. (2) reduces to a non-
linear elliptic equation for the p(a, 6) function.

)

In this letter our goal is to derive an equation such as that in (2) for a multiper-
iod stellarator with a circular geometric axis.

For simplicity, we shall ignore the toroidal corrections for the vacuum stellara-
tor magnetic field By, = Vg,
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and use the conventional “stellarator” approximation, in which the cross sections of
the vacuum magnetic surfaces are close to the circular cross sections, and the para-
meters a/R and §=2 p/B* are small. We introduce the flux coordinates a,, 6., and
¢ with straight lines of force for the vacuum system of the magnetic surfaces and the
X and Y coordinates which are formally associated with them *

X=R-a, cosf, , Y =a sinb, . “4)
These coordinates are related to the cylindrical 7 and z coordinates by the relations*
r=R-a (1+8) cosf + Aa siné ,

€))

z =a, (l+8)sin0v +7\avc030v,

where
1 dr,
8(av,6v,§‘):2* cos(lHV »rmli'),
) av av
(6)

lfl
k(av,ﬁv,§)=v? sin(lf)vfmlf),
v
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fi =g O Il( R ) (M

1

We now introduce the flux coordinate system a, 8, and { in the presence of a
plasma. Thus X and Y coordinates and a, and @, coordinates, which are assumed to
be the functions of these variables, turn out to be independent of { in the stellarator
approximation.’ This means that the equilibrium problem reduces to a two-dimen-
sional problem. We shall isolate in o =gz /v/g the average partin ¢: oy =ad (e, 0)
+ay (@, 0¢). Thus, in the approximation under consideration we have

@y =(X' X +Y'Y)/RD S =(X*+Y °)/RD,
a3 =R[1—k(R~X) +hi(a )]/D,
(V&)= R[1-k(R—X) — ha(la, )ID
D=XY' -X'Y.
Here the prime denotes the derivative of a, the dot denotes the derivative of 8, and

k=1/R is the curvature of the geometric axis. The /; and h, functions are deter-
mined by the equations
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where
1141

A=m12/R2+lz/a3 . B = mf [R*+ 312/113 , C= -
v

The sought-for two-dimensional scalar equilibrium equation, which can easily be
determined from the general system of equilibrium equations in the flux coordinates,’
can be written as follows:

d dad, , FF' DFyY 1 d
1] 0 N E :_4172 7y 0,7 —— —— — e
v da S J (V&) °p a3s R* a, da,
X [a2uofa,)]. (10)

It differs from Eq. (2) in that it has stellarator corrections in (v/g )° and in az; and
an additional term containing the vacuum rotational transformation
nz[l3d1'l dI? (&) m; a

:2.‘ 2 ~ - e = v. 11
Mo (a ) 161 y P % d,f R (11)

i
|
L

Aftersolving Eq.(10) as X(a, 6) and Y (q, 0) functionsoras a,(a, ) and 8, (a, 0)
functions, we can convert, according to Eq. (5), to the 7, z coordinates of the labora-
tory coordinate system, thus taking the three-dimensional equilibrium configuration
into account.

In solving Eq. (10), we took advantage of the fact that the vacuum magnetic
surfaces are close to the circular surfaces. Since the distortions associated with the
plasma pressure are large, Eq. (10) can be used to study stellarators in the same way
as Egs. (1) and (2) are used for tokamaks, We thus can solve the two-dimensional
scalar equation by using the well-known methods of solving an analogous equation
in the tokamak theory, instead of using the complex, three-dimensional calculations
for the optimization of stellarators, which takes into account the limiting plasma
pressure.
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