A transition from a commensurate phase to an
incommensurate phase in a continuous medium
with dislocations

T. Bor, V. L. Pokrovskil, and A. L. Talapov
L. D. Landau Institute of Theoretical Physics

(Submitted 14 January 1982)
Pis’ma Zh. Eksp. Teor. Fiz. 35, No. 4, 165-167 (20 February 1982)

A transition from a commensurate phase to an incommensurate phase is studied
in an anisotropic system with a commensurability order p =2. A term which
describes the formation of dislocations is added to the sine-Gordon theory. The

phase transition acquires an Ising nature if the dislocations are taken into

account.

PACS numbers: 61.70.Ga, 61.50.Ks

Theoretical and experimental studies of the phase transition from a commensur-
ate phase to an incommensurate phase are continuing.! = In regard to systems which
are incommensurate with the substrate in one direction, it has recently been pointed
out*~® that the dislocations in the soliton structure must be taken into account. It
was shown that the regular soliton lattice is unstable to the formation of dislocations.
The nature of the corresponding phase transition and the structure of a new “mol-
ten” phase, however, have not been studied. According to Refs. 5 and 6, an instab-
ility appears only if the commensurability order p is sufficiently low, i.e., at p> <8.

In this letter we shall consider a phase transition when p =2. This phase transi-
tion has been studied experimentally by Jaubert and his co-workers.” Using the
methods developed by Luther and Peschel® and Mandel’stam,? we show that an ex-
act solution can be obtained in this case at a certain temperature. The experiment
is described by a field theory similar to the sine-Gordon theory. The Hamiltonian
appearing in the transition-matrix of this system can be written by using the boson
field ¢ and its momentum P=(1/)(6/5¢)
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where L is the length of the system in the x direction. The first two terms corre-
spond to the harmonic elastic interaction between the adsorbed atoms. The third
term describes the initial incommensurability with the substrate. The term contain-
ing cosfy is a periodic potential of the interaction of atoms with the substrate. The
last term describes the dislocation effect.’® The constant ' is proportional to the
probability of formation of a dislocation and f is proportional to the square root

of the temperature.

We introduce the fermionic variables {/; and ¥, . According to Refs. 8 and 9,
Eq- (1) can be rewritten as a Hamiltonian of the generalized massive Thirring model
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Here a is the lattice constant.

For % =4n we have g=0, and we find a quadratic Hamiltonian with ¢=1. Dia-
gonalizing it by using the Bogolyubov transformation, we find the spectrum

€(k) =+(K+m?+p? +0+ 2v/ k2 +utm? + Nm 2 ). @)
The free energy density F is equal to the ground-state energy of the Hamiltonian

H divided by L. Only those states in Eq. (4) whose energy is negative are occupied.
In contrast to the case A=m =0, the free energy varies in the following way:

1 = —
AF=— — % {\/2 (B 4+m? Hp2 + N+ (K +m?—p? =N +420Y) 2 2k

k>0
)
The phase transition occurs when
“Z =m 2 _ )\2, (6)

as 82F/ou® tends to infinity logarithmically.

The difference in the densities of the solitons and antisolitons is # =-0AF/du.
For |u-u.{<<m and A <<m we find

n=—;5<‘/’" ;“), ™)

where E is a complete elliptic integral.

According to Eq. (4), the fundamental-excitation spectrum at A0 has no gap
only at u=u.(m,\). The correlation length is therefore finite at any u#pu.. Conse-
quently, in contrast to the case A =0, the system is not a two-dimensional incommen-
surate crystal with power-law correlations at u>p.. The soliton density (7), none-
theless, obeys the law n~+/p- u. , on condition that -y, =>4, consistent with the
results of Refs. 1 and 7. The correlation length is proportional to A™! in this region,
and the system behaves as an ordinary incommensurate crystal at a distance less than
AL

In the limit u—> u. the energy gap Ay vanishes in a manner Ag ~u- .. The cor--
relation length &, therefore diverges according to the law £ ~ (u-u.)™". Since
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- K. plays the role of the reduced temperature, the critical index v has an Ising
value v =1. The behavior of the free energy and of the correlation length shows that
this phase transition resembles very closely the transition in a two-dimensional

Ising model. Such behavior has been predicted elsewhere!! and in the private com-
munication of Schulz, in which the discrete models were studied. If, in fact, the
Hamiltonian in (2) (cg=0) is converted to the variables in which it is diagonal at
A=0 and the spectrum branches, whose energy is of the order of m at k =0 are ig-
nored, then we would have 2 Hamiltonian at small k, which is the same as that in
Ref. 11.

Until now, we have considered a special case in which g =4m. We expect that
the results obtained by us will hold for other values of § if m and X are replaced by
their renormalized values mp and Ag.

The equations for renormalization of m and A were obtained by Wiegmann'©
and Jose et al.'> The presence of a term with g in Eq. (1) does not change them,

since the momenta k >> m contribute to the renormalization. Therefore,
2

B 4n
my (E)’Vmcxp(l—-;;)z, AR(E)~7\exp<1— ﬁz)‘g’ , ®

where £ is a logarithm of the characteristic length. The renormalization stops at
£=-1/2 InX(m% +2%), and for A< m we have

Q _;*/41;) 542” - 1)/<2 - %) . ©)

mp ~ m ,)\R"')\m

According to Eq. (6), the transition occurs only on condition that m=AX. The criti-
cal point on the phase diagram is therefore determined by the equation mp =Ag.
We determine from (9) the critical value of §

2 s In m
R R NV o : (10)
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In the limit A—> 0 we obtain the known result $2 =8x.

At p=2 the commensurate state is doubly degenerate, corresponding to the ar-
rangement of atoms in two different sublattices. The solitons form a boundary be-
tween these two states. At [ul <€y, virtually the entire plane is occupied by one of
these states and at u=u, both states are in the domains of infinite size. This is
completely analogous to the behavior of the Ising model. We expect that the order
parameter {exp (iBp/2)), i.e., the Debye-Waller factor, decreases in the commensurate
phase as (u - u)‘/ 8 asin the Ising model. Such a pretransition effect is missing at
A=0. The logarithmic increase of the specific heat and of the two-dimensional com-
pressibility is also regarded as the pretransition effect.
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