Pulse propagation in a long laser amplifier
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The characteristic of a long laser amplifier is determined; i.e., the structure of a
pulse at the amplifier output is determined as a function of the shape of the
ignition pulse.

PACS numbers: 42.60.Da

1. The propagation of a coherent pulse in a two-level nondegenerate medium, if
the dissipative effects are ignored, is described by the known system of equations®»?

E +E, =2miQd[n({w)u(w)V(w)d ), 1)
ut=iwu+idEv, @
v, = —iwv+idku

t

for the complex envelope of an electric field £ and for the amplitudes of the proba-
bilities u and v of a “‘two-level atom” residing in the upper (or lower) states. Here
€ and d are the frequency and dipole moment of the transition, and the function
n(w)=N,(w)~-N_(w), which characterizes the inhomogeneous broadening, is the
difference between the initial populations of the upper and lower levels. We assume
that the medium occupies the half-space x >0 and that there is no field in the medi-
um at ¢<<0, and at the instant of time £=0 the pulse E(x, £)|—o =E¢(f), where
Ey(£)=0 at 1<0, enters the medium. The notations in Eqgs. (1) and (2) were chosen
in such a way that we must assume u(w, x, £)=1 and v(w, x, t)=0 at r=0. We
describe E(x, 1) as a function of Ey(¢) at sufficiently large x in the case of an inver-
sion-population medium N = fn(w)dw >0;i.e., we describe the ‘““characteristic” of a
long amplifier.

2. The system of Egs. (1) and (2) can be investigated in detail by using the in-
verse-problem method. Without dwelling on details, we present here only the needed
facts; the details can be found elsewhere.3* It is not difficult to relate the notations
used here with those in Ref. 3.

We use x(w, x, t) to denote the vector
X=(Xl¥ X2)=(u((’~”x:t)r V(w,x,t))e'i“')t,
The function x satisfies the equation
1 . - 20wt T, dw
X(w) =(,0)- — [R(w,x)e X(w') — 3)
27 C w—w

where X = ()2, X1 ), and R(w', x) is the conventionally defined reflection coefficient
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for the system (2). The dependence of R on x is given by

1 nQd*n(w’) ,
Riw, x) = R(w, O)exp2ixé)~—2f-————-—— dw | - “)

w—-w-i0
R(w, 0) is calculated from the incoming pulse £ (¢). The integration contour C'in
Eq. (3) extends into the upper half-plane.

Equations (3) and (4) are the system of equations of the inverse problem, whose
solutions determine u(w, x, t) and v(w, x, t) and, therefore, E(x, £).

We shall assume that E(f) has a power-law behavior at zero, where Ey(£)=ct” at
t>0. Without loss of generality, we can assume that ¢ is real. For such E, the
asymptotic behavior of R(¢w, 0) in the limit w —~ ~ and at Im < >0 has the form

R ¢ w WY c'= 7 (DR w+1)de %)

[we show below that the entire structure of E(x, ¢) at large x is determined by the
behavior of E, at zero and is insensitive to the subsequent behavior of this function.
In other words, the pulse shape in the long amplifier is determined exclusively by the
ignition-pulse front].

3. We introduce the notations
2

— Qnd
z =4, Vx(t—x], Q3 = 3 fn(Wdw,

At large x and intermediate z (z <K Qox) Eqs. (3) [with allowance for Eqs. (4) and
(5)] are simplified to the form

iZ(n - L
—12(A - A')

-~ ox
x(A)y= (1, 0- Lo p° X 4
2’ITZC A’**A A'U+l

Ay ©)

where
v+1
A z P c'( z )
= — w, = .
4Q22x v T 7

At z>>1 the integral in Eq. (6) is determined by the neighborhood of the saddle
point A'=i. A formal computation of the right side of Eq. (6) with an accuracy to
O(e? /2112 gives an expression for x(A) in terms of the function ¥(A) and its 2V
first derivatives at A=i. This makes it possible to write a closed system of linear alge-
braic equations for x, X', . . . , X" lq=yand %, %, . . . , %V 4=, whose solution de-
termines x(A) and, ultimately, E(x, ¢). The answer looks especially simple in the limit
of very large x: iflnln Q4x > 1, then £ near the pulse front has the form of a se-
quence of 27 pulses

N+1 k 2
-1 882 x
E(x,t)=8£22x z —(——lch“l{ 0

k=1 %k

(t—x—ék):!, )

2
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where z; ~(v+1)In Qox -@ +3 ~k)Inln Qox and & =(1/x)zx/42%)*. In this
limit the pulse front therefore consists of a sequence of alternating 2« and -27 pulses
of decreasing width 7> (v + 1) (In Q¢x)/(82%x) and increasing amplitude |E|
=8Q3x(v+1)In Qox. The distance between the solitons behaves as A7

~2rinln Qox. For a given N, Eq. (8) applies at z<zpy.; + 3 Inln yx. We note,
however, that this answer is generally valid only at z<zy . , where Ny, ~In Qox/
Inln Qux.

4. It follows from Egs. (6) and (7) that the quantity U=d ! E(x, t')dt’ satisfies
the equation

U

= 2 o
ot YU, =48, sinU )
This equation has self-similar solutions (see Refs. 5 and 6) that depend only on
z=48Q0 /x(t-x), such that
1 .
v,, + - U, = sinU. (10)

The solutions of this equation, which are regular at zero, are uniquely determined by
the solution at zero

U= U(UO) Z), U(UO! 0) = UO’

so that U, parametrizes the set of solutions (10).

It is important to note that the parameter U, can be described by a sufficiently
arbitrary, slow function of x/z. In this case U[U,(x/z),z] is everywhere only slight-
ly different from the true solution of Eq. (9). The fact that such “quasi-self-similar”
solutions arise in this probiem is seen directly from Eqgs. (6) and (7): The dependence
of x on the coordinates x and ¢ converges, for the most part, to a z dependence, since
the solution, roughly speaking, depends on f, only logarithmically.

The specific dependence on x/z can be determined in the following manner. For
U, X1 the solution of (10) has the form

U=Uply(z), (11)

where 7 is the Bessel function of an imaginary argument. IfIn 1/U, > 1, Eq. (11)
is valid at large z when I, can be replaced by its asymptotic form

U= erz /\/2—7;
The corresponding expression for E has the form

8U, X
E= —2 Q2 &, (12)

— 0 23/2

d/2n

On the other hand, at large x and z the solution of Eq. (6) can be obtained by a sim-
ple iteration in the region where the inequality f,e” <1 is satisfied. In this region
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i Q% x 8 _ 7z % x
Ed=—8¢ 2 0 z) =— iv ———%7.32_
¢ f;' Iv() \/217‘ fv(x),z 2

Comparing Eqgs. (12) and (13), we find
Up=cl@+1Xz/8Q2 x )V !,

The expression for the field E=d™' U, has the form
2

8Q
E(% t) = —2=U, (Us @ fx) )

The region of applicability of Eqs. (14) and (15) is given by the inequalities z>> 1
and In 1/Uy > 1.

Thus, the obtained expression for the field in a long laser amplifier has a quasi-
self-similar character. The field in the pulse increases approximately as x, and the
pulse width decreases as 1/x. The structure of the pulse is determined exclusively
by the front of the ignition pulse [the parameters ¢ and v in Eq. (14)].

As regards the explicitness of Eq. (15), although the solution of Eq. (10)is gen-

(13)

(14)

(15)

erally not expressed in terms of tabulated functions (they belong to the so-called Pen-

lev transcendental functions), U(U,, z) is approximated in the limit In 1/Uy >1 by
elliptic functions with slowly varying parameters.

The author wishes to thank V. E. Zakharov for attracting his attention to this
group of problems, and I. Gabitov and A. Mikhailov for fruitful discussions.
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