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A theory is derived for phase transitions which result from particular features of
the electron spectrum (congruent parts of the Fermi surface, particularly in
quasi-one-dimensional systems). If the congruence is not perfect, or if the masses
in two-band systems are greatly different, the fluctuations may occur over a
broad temperature range. This result can explain, for example, the anomalies in
the susceptibility, compressibility, and phonon spectra in A15 compounds.

PACS numbers: 61.50.Ks, 71.25. —s.

The Landau theory of phase transitions ignores inhomogeneous fluctuations of
the order parameter. The range of applicability of this approximation (the average-

field approximation) is determined by*
2 2

1>>rl >> —£ = Gi, (1)
ac

where 7=(T-T.)/T,, T, is the transition temperature, and a, b, and ¢ are coefficients
in the expansion of the free energy in powers of the order parameter A:
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For superconductors the Ginzburg number is Gi =~ 100 (T, /ex)* ~ 1071* (Ref. 2), and
the fluctuation region is essentially unobservable (the Fermi energy is ez > T.).

Phase transitions in electron systems which result from the presence of congruent
parts of the Fermi surface, including Peierls transitions, have much in common with
phase transitions in superconductors. In these systems (which exhibit an electron—
hole pairing®), the ratio T./ez is also small. It might therefore seem that the fluctua-
tion range should also be small, but this is not always the case. Let us examine, for
example, the phase transition of a semimetal with a spectrum e; (p) = (p* - p})/2m; ,
€,(p+w)=~(p* - p#)/2m, to the state of an excitonic dielectric. Such a transition
may be accompanied by both structural distortions and the appearance of an anti-
ferromagnetism.> In both cases the order parameter is the dielectric gap at the
Fermi surface. An expansion corresponding to (2) can be constructed by a diagram
perturbation theory, and the coefficients @, b, and ¢ can be calculated in the same
way':
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where § =(m, -m, )/(m, +my), m=2mym, [(m, +m,) and vg =pp/m. Using
T, ~0.57 Ag(1-82)1/2 | Ay =2ep exp(-1/g), where g is the coupling constant, we
find the Ginzburg number

4
Gi'f—'l()(-A—o) (1-58%y2. )
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If the difference in masses is large, the fluctuation region may thus be quite large.
With m., /m, ~ 100 and g~ 0.3, for example, Gi tums out to be of order unity, and
the Landau theory is completely inapplicable.

A role similar to that of the mass difference may be played by a possible incom-
plete congruence of the Fermi surface, resulting from, for example, doping or an an-
isotropy. In quasi-one-dimensional systems, another possibility is a distortion of a
flat Fermi surface by a hopping of electrons between chains.

To illustrate the situation, we consider a single-band metal with a spectrum
&(p) = -e(p +w) £ u, where u is a constant, and where the + correspond to different
regions of solid angles. Mathematically, this model is completely analogous to a
superconductor in a strong exchange field,* with the role of the exchange field being
played here by'? u. We know that in this case the (T, «) phase diagram has a point
To(u)=T,~054T 0, u=121.06T s, (T, is the transition temperature at % =0),
at which a second-order transition (at T,,>T',) gives way to a first-order transition
(at T,.< fc). In other words, this is a tricritical point,! and we have a coefficient
5(T., ))=0. Fluctuations near such a point should be suppressed.! In this system,
however, the coefficient ¢ is equal to vkb, and it also vanishes at this point;i.e., in
our case the tricritical point coincides with the so-called Lifshitz point.> It can be
seen from (1) that the fluctuation region should expand as we approach the Lifshitz.
point. It should be noted that we are restricting this discussion to the region u<#
(ie., T, >T,), in which the second-order transition occurs from the metallic phase
to a homogeneous dielectric phase, so that expression (1) applies. At u> i, the
transition is to an inhomogeneous (incommensurable) phase, and condition (1) may
take a different form. Formally, we have Gi== precisely at the Lifshitz point. In
this case, however, terms of the next higher order in A and its derivatives would have
to be taken into account in (2), and these terms would limit the fluctuation growth.’

In both cases (the case of different masses and the case of incongruent Fermi sur-
faces), therefore, the growth of the fluctuations results from a decrease in the gradi-
ent term in (2), i.e., a decrease in the “stiffness” of the system. As a result, during
structural transitions there is a softening of the phonons over a broad range of wave
vectors. This effect can be seen particularly well in the case of a semimetal. The
phonons which undergo the softening have momenta ¢ =w for which ¢, (p)=-¢,(p
+w) (near the Fermi surface). If m, > m,, this condition holds approximately for
momenta q quite different from w. In the limit m, ==, with an infinitesimally nar-
row level, this condition holds for all gq.

The effects discussed in this letter may be responsible for the anomalous tempera-
ture dependence which has been observed for the susceptibility and the compressibil-
ity in A15 compounds, and they may also be responsible for the anomalous softening
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of the phonons over neatly the entire Brillouin zone.® We might also note in this
connection that in Sm(Y)S compounds the frequencies of the longitudinal phonons,
which soften (to a greater extent than those of the transverse phonons) at a phase
transition to a state with a variable valence, lie below the frequencies of the trans-
verse phonons (even at room temperature) nearly throughout the Brillouin zone.”
This circumstance may also be related to the effect described above.

These effects may also occur during magnetic transitions, in particular, in chro-
mium and its alloys, where spin waves would play the role of phonons.

Finally, we note that, because of the significant critical region in these systems,
the fluctuational corrections should substantially change the relationship between
T, and Ag.

We wish to thank B. A. Volkov for a useful discussion.

l)We note in this connection that the effects which we are discussing here, i.e., the broad fluc-
tuation region, should also occur in superconductors in a strong exchange field.
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