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An equation arising from an analysis of the four-dimensional rotations of a light-
front hypersurface is derived for the state vector defined for a light front wx = o
{w? = 0). This equation supplements the Schrodinger equation and removes the
ambiguities in the wave functions of relativistic compound systems.

PACS numbers: 03.65.Ca.

A relativistic wave-function (WF) system, which is needed to describe compound
systems (nuclei and hadrons in quark models) at momenta of the order of their
masses, has been developed.!™> These WF are the Fock components of the state vec-
tor defined for the light-front surface wx =0 (w? =0). The convenience of such a
tool, as compared, for example, with the theory at the “zero plane” z +¢=0, lies in
the explicit covariance of the WF and in the maximum separation of the kinematic
transformaiions from the dynamic transformations: transformations of the refer-
ence frame are kinematic (i.e., they contain no interactions), which, for example,
simplifies considerably the formation of states with a spin,® while the dynamic equa-
tions for the state vector @ are obtained by examining the motion of a light-front
surface with respect to a given coordinate system. One such equation is the Schro-
dinger equation, which follows from the analysis of the translations of the light front
and which contains interactions of the form

i jﬂg) = [}(a)d)(a) , | (1
oc

where A(c)=f A" (x)8 (wx - 6)d* x, H™ (x) is the interaction Hamiltonian.

The purpose of the present paper is to obtain another equation (the “angular
condition™) for the state vector, which follows from the analysis of the four-dimen-
sional rotations of the light-front surface, and to determine its role in the problem
for bound states, It turns out that this equation eliminates the nonphysical degen-
zracy of the relativistic states which appears in systems with a total angular momen-
tum different from zero (in particular, in the Weinberg equation® for nonzero angu-
lar momentum).

The desired equation follows from the Tomonagi-Schwinger equation

5¢

. = ["{int )
I%Ba(x y (9{/¢

We examine those variations of the light-front surface wx = ¢ which transform it to
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the rotated surface w'x =g, where w'=w +8w, 8wy, = €,,w,, and ¢, are the infin-
itesimal rotation parameters. The total increment of the state vector 8¢ is the sum
of the increments at each point of the surface: i6¢=f int (x)6V(x)®. The incre-
ment of the four-dimensional volume above the point x of the surface wx =0 is

8 V(x)= €ypx, 0,8 (wx -g)d*x. On the other hand, ¢(w) > ¢ (w +8w)=¢P(w)
+8¢(w), where 6¢(w)= e“,,w,,a [dwyup(w). Hence, we find the equation which de-
fines the dependence of the state vector on the 4-momentum vector w:

A _ LR 2
L (ww = Jint ¢, @
where
A 9 9
_ 9 (3)
Ly '(% 2w, aw,,) ’ y
JE S pfrintg w, —x,0 WB(wx - o) *x. @

In addition to Eqgs. (1) and (2), the state vector of a bound system satisfies the
equations for the eigenvalues:

A

P.¢]=p, 0 . ©)
w2el=- MU+, (6)

Ws ¢" MS‘PJ Q)

whete Pu =P2 + w"H (o), 132 is a free operator, p2 =M?  and HA/,‘ is the Pauli-Lyuban-
skii vector:

A 1 A
W“ 2 envp*ypv

A

by ) )

where
q =0 + i (w)
M, = Toy ¥ Loy ’
J oy isa free operator, and va (w) is given by Eq. (3). Instead of MM, the Pauli-
Lyubansku vector contains the operator
= J0 int

Py Jp + Jp'y ?
where J jint is given by Eq. (4). Bearing in mind Eq. (2}, however, we have replaced
J'"t by f py(w)and J,, by M, in Eq. (8).

Equation (5) determines the momentum and spectrum of the masses, Egs. (6)
and (7) determine the angular momentum J and its projection s (in the system where
p=0); the construction of states with a certain momentum is a purely kinematic
problem, since the operator M oy Which appears in Eq. (8) contains no interaction.
This problem has been solved elsewhere.? Equation (1) determines the trivial depen-
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dence of ¢ on the “skew” time 0. What, however, does Eq. (2) determine [apart
from the replacement of J, P byM oy in Eq. (8)]?

To answer this question, we note that the operator
{ = ©)
A=w A W“

>~ -~
commutes with P, and with W,; i.e., in addition to mass and spin, the states are
characterized by another quantum number—the eigenvalue of the operator 4:

Ao, = as,. (10)

Far example, at /=1 we have three states: =0, 1. These states are degenerate. In
fact, the operator

A " A A A
- — t
=M, T =L (W) - T (11

commutes with ﬁu (Ihe commutators of Jl‘/} up and J w With ISM are equal), but does
not commute with A4 :
A A A A
[AJW,A ]=iw P (eaB N TN —eanAAJM)H(W“wV - Wuwu). (12)

Therefore, the state @’ =AJW<I>,, is a superposition of states with different a, but
with the same mass as &,,.

If the state vector corresponds to a momentum different from zero, then the
action of the commutator (12) on the state vector gives a result different from zero,
even if Eq. (2) (i.e., AJ,,®=0) holds. Therefore, Eqgs. (2) and (10) are not consis-
tent equations. The solution of Eq. (2) is a superposition of the degenerate ¢, states:

o= Ecaq;a, (13)

Therefore, Eq. (2) eliminates the nonphysical degeneracy of the relativistic
states, and since it is rewritten in the form Z¢, (Aj;w)a 0 =0 [(AJyp)a'q are the ma-
trix elements of the operator (11) in the ¢, basis], it determines (within the normali-
zation accuracy) the coefficients in Eq. (13).

We elucidate the foregoing by the example of a two-particle WF. This WF satis-
fies the approximate equation obtained from Eq. (5):

2 3

d
(4(q’+m2)~M2)w(q,n)=-5'1’3— SV Vg M) L,
) u eq’)

(14)

where q is the momentum of the particle 1 in the rest frame of the pair 1 and 2, and
n is the direction of w in this system.! Equation (14), which is written in the var-
iables k=q* -(n- q)* and x = [1-n- q/e(q)] /2, is identical to the Weinberg equa-
tion® for the WF in a system with an infinite momentum (see Ref. 4). The momen-
tum operator has the form?
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A i 9 1 o
J=—_[qx—-—]+—_—[nx—-] (15
i oq i on

In the limit ¢ <<<m the WF ceases to depend on n, the term 1/i [nX 8/dn] can be
dropped in Eq. (15), and the operator {15) becomes nonreldtlvzstlc The operator
A'=n-J plays the role of the operator (9). It commutes with J and with the kernel
V (since the kernel V is a scalar). AtJ+#0 Eq. (14) therefore has several solutions,
which differ in the eigenvalue of the operatorA irrespective of the form of the ker-
nel. Thus, the ground state of a deuteron is degenerate. The condition for the Fock
components, which eliminates this problem, follows from Eq. (2). The explicit form
of this condition depends on the original Hamiltonian i (x) and on the subsequent
approximations. The condition for the two-particle WF, which is obtained within
the framework of the model of two scalar particles that interact in the ladder approx-
imation by means of a scalar massless particle exchange, will be given in a more de-
tailed study. We note that the WF for a light front obtained previously® in this mo-
del and the relativistic WF of a deuteron® satisfy this condition.
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