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A general expression is obtained for the impedance of a metallic plate in a strong
magnetic field H, perpendicular to the surface, for an arbitrary value of the
coefficient of reflection for electrons p. A method, which is based on the use of
this expression, is proposed for determining p from the shape of doppleron
oscillations. With its help, the specularity coefficient is determined for
octahedron holes from measurements of the impedance of a tungsten plate in the
case HJ| [100].

PACS numbers: 73.25. +1

Several methods have recently been proposed for determining the specularity coeffi-
cient p for reflection of electrons from the surface of a metal. The method for measuring
p directly, proposed by Tsoi,! is very effective for values of p that are not very small.
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Another method is based on measuring the anharmonicity of Sondheimer vibrations,?
which was predicted in Ref. 3. In this paper, we describe a method which makes use of
the anharmonicity of doppleron vibrations in the impedance of a metal plate. It differs
from the method in Ref. 2 by the fact that it is more sensitive and does not require a
knowledge of the explicit form of the nonlocal conductivity. In addition, in contrast to
Refs. 1 and 2, the method proposed is contact-free.

The field distribution in a plate in strong magnetic fields [(H/H)? >>1, where Hy, is
the threshold doppleron field] for arbitrary value of p can be expressed in terms of the
field eo($) in a semi-infinite metal for p=0,

1

eo(£) = e r(s), )
where { =2nz/u, z is the distance from the surface, u is the maximum displacement of
electrons over a cyclotron period, ¢; =k,u/2m, k, is the propagation vector of the long-
wavelength component, f({) is the short-wavelength part of the field, which consists of a
sum of the doppleron and Gantmakher-Kaner component fields (see, for example, Ref.
4). In the range of magnetic fields being examined, the inequalities g, <<1 and
A <K 1 are satisfied, while the dimensionless wave vector g, corresponding to the asy-
mptotic form of £(¢) for {>>1, is close to -1.

The efficiency of the interaction of electrons, which are responsible for the Doppler-
shifted cyclotron resonance, with the long-wavelength component of the field in the pre-
sence of specular reflection is small. A specularly reflected electron acquires a momentum
that is nearly equal in magnitude and opposite in sign to the momentum it would ac-
quire in approaching the surface. As a result, the ratio of the momenta acquired with
specular and diffuse reflection turns out to be equal to -2 g¢,. For this reason, for 1-p
>>1q, |, the effect of specularly reflected electrons on the excitation of the short-wave-
length component can be ignored and the field in the semi-infinite metal is described by
the equation

e,(£) = (1= p)I ) @

For antisymmetric excitation of the plate, the long wavelength component of the
field, normalized to unity, has the form

, g1 (L —¢ iq, L
[eias _ S0 9] o M0ty

while the corresponding short-wavelength component is equal to (1 -p)[F($)-AL -],
where L =2nd/u and d is the thickness of the plate. In addition, the presence of specu-
larly reflected electrons leads to the fact that the short-wavelength component, having
reached the surface, is reflected with coefficient p and propagates in the opposite direc-
tion. For this reason, f({) must be replaced by the sries () +pf (2L -O)+p* f(RL +§)+- .
As a result, the distribution of the field in the plate has the form

1

E(i‘) = [ eiqlg-__ eiqn(L - g.)](l_eiqll‘)_l

f(-p)Z (—pi’{f(ﬁnL)—f[(nﬂ)L—f]- )

n=0
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Using (3), we find the impedance

oo -1
iE (0) e WS ) —py1lecnL
_, E@ L a-pFE e @
L= =0 ©) a[a‘ 7 n=1

iq L -1

A =a qx—-—-e—~— if' © d-p)| , a=4wu/cd ®)
1 —elfil

where w is the frequency of the exciting field, and the prime indicates differentiation
with respect to {. In obtaining (4)-(5), we took into account the relation f'(L) =-if (L),
which follows from the inequality L >> 1.

Let us examine a situation when the Doppler oscillations greatly exceed the Gantmak-
her-Kaner oscillations (GKO) and (L) = b, exp(ig, L), where g, =q 5 +ig, is the re-
duced doppleron wave vector. In this case, the sum in (4) becomes a geometric progres-
sion and the expression for Z with the help of identity transformations assumes the form

Ay exp (iqaL )
Z = Z + ’
4 1+ Xexp (igyl)

(6)

-q' _.n

Ao B Y AR, A=-p 2 g T
14 a p 0

The quantities R, =R.Z and X, =Im4, represent the smooth parts of the surface resis-
tance and reactance of the plate; the real and imaginary parts of the second term in (6)
describe their oscillations. It is evident that these oscillations are not harmonic and that
the degree of anharmonicity is determined by the parameter n=|A|. For this reason, it is
possible to find the specularity coefficient p from measurements of the impedance.
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FIG. 1. The functions R (H) (cutve 1) and X (H) (curve 2) for a tungsten plate. Hinll[100],
(w/27) =330 kHz,d=0.43 mm, and T=4.2 K.

296 JETP Lett, Vol. 35, No. 6, 20 March 1982 Voloshin etal. 296



R
oHe /\ 1

55 575 6 625 H, xoe

FIG. 2. The traces of d>R./dH* (1) and d? X /dH? (2) on an enlarged scale.

The total range of the oscillations 27, where
2r = max(R -Rp )-min (R —Rp)=max(X—Xp)——min(X—Xp )
is related to 4, by the relation
| Ay 1= 7 (1-1?). ®)

Using Eqgs. (7) and (8), as well as the fact that by <0, we shall express the specularity co-
efficient p in terms of experimentally determined quantities:

o rX 2112 rR
-q,L p ’ p
pe 2 — nz_ ——————-2 X2 (l—nz) _ : 2(1_7’2)’ (9)
Rp + » Rp +Xp

We emphasize that the form of this equation does not depend on the nonlocal conductiv-
ity and is universal.

Figure 1 shows the experimental traces of R.(H) and X, (H) for tungsten plate with
a resistivity ratio pago/pa.2x =35 000 (in tungsten, the resonant carriers are holes and,
for this reason, all the equations presented above refer to positive circular polarization).
In preparing the specimen, its surface was mechanically ground and chemically polished.
Figure 2 shows fragments of the traces of d?R../dH? and d? X, /dH? on a large scale,
obtained by using a modulation technique. We note that these curves, recorded under
conditions when the amplitude of the modulation is commensurable with the period of
the oscillations, strictly speaking, are not exact derivatives (see, for example, Ref. 6). It
is more clearly evident from traces of the derivatives that the oscillations indeed are not
sinusoidal. The quantity 7 is easily found from the characteristic points on the curve
R(H) or X(H) with the help of elementary relations following from (6). The value of 5
obtained is not large (n=0.1-0.2). It is possible to determine n with high accuracy from
the ratio of the amplitudes of the harmonics of d2R/dH? or d*X/dH*. For this, it is
necessary to expand the experimental curve over a single period in a Fourier series.

Analysis of the experimental data using the method described above for the fifth
through tenth periods gives values of the quantity p exp(-g5 L) within the range
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0.08 £0.01. The values of this quantity for subsequent periods decrease, since the am-
plitude of the doppleron oscillations becomes comparable to the GKO amplitude, whose
form is much less appreciably distorted. For the first four periods, this quantity is also
found to be smaller, since its damping increases as the doppleron threshold is approached.
For the periods presented above, the quantity g L is approximately equal to d/I, where
! is the mean free path of resonance electrons. The mean free path of electrons in the
same group was determined in Ref. 6 for specimens with a resistivity ratio equal to

5X 10*. It turned out to be close to 1 mm. For this reason, for the given specimen, we
shall assume that /=0.8 mm. As a result, we obtain the value p=0.15+0.05, which
agrees with the data in Ref. 7. On the other hand, this value is much smaller than that
obtained by Tsof, who studied specimens which were prepared by using a different pro-
cess.

In conclusion, we shall present the equation for GKO with “minus” polarization

-1
iglL !

Z_—Zp=——Z,,{1+ - Loy 4

| Q-p)*F, | 2m c_ D_(q) 1+pei

where D (q) is the left side of the dispersion equation D _(q); Cis the contour that cir-
cumscribes in the counterclockwise direction a cut, drawn in the g plane from the branch
point of the nonlocal conductivity on the right side to e. Analysis of the GKO also
allows measuring the quantity p, but only if the explicit form of the nonlocal conductiv-
ity is known. Using for tungsten the function D_(g) from Ref. 4 and comparing (10) with
experimental data, we obatined p=0.15.
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