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There is an interrelation among the Bloch frequency, the negative differential
conductivity, and the generation of oscillations in a superlattice in an

electric field. The dynamic conductivity of the superlattice remains negative even
at frequencies near the Bloch frequency.

When an ideal crystal is placed in a constant and uniform electric field, an electron
at the bottom of the band begins to accelerate. It reaches the boundary of the Brillouin
zone and then is reflected by Bragg diffraction to the opposite face of the Brillouin zone.
Because of the negative effective mass, the energy of the electron begins to decrease, the
electron reaches the bottom of the band, and the process repeats itself. Such oscillations
occur at a characteristic Bloch frequency {1z = eEd/h, where d is the lattice constant.'
The finite motion of the electron in k space leads to a bounded motion in coordinate
space and thus to a quantization of the electron spectrum, with a level separation
hQp=eEd (a so-called Stark ladder).*”

It follows that, if there is no scattering, the system will not conduct a constant
electric current, because of the finite nature of the motion. A scattering will lead to a
disruption of the Bloch oscillations (the system will become current-conducting), and it
will be essentially impossible to observe such oscillations (and the quantization of the
spectrum) in 3D crystals.

The idea of superlattices was first proposed by Keldysh,* who in the same paper
reached the conclusion that these superlattices would have a descending current—voltage
characteristic. Esaki and Tsu’ later proposed a more practical method for implementing
this idea, through a variation of the composition or doping. In superlattices, because of
the narrow allowed band (a miniband), an electron can traverse an energy interval span-
ning the entire band without undergoing collisions. In such systems, Bloch oscillations
(and a Stark quantization) may be realized. It has also been suggested” that Bloch oscil-
lations in superlattices be used to generate microwaves.

However, as was subsequently demonstrated experimentally,” Bloch oscillations are
not responsible for the generation of oscillations and the descending region of the
current—voltage characteristic. Several questions accordingly arise:

1. How is the generation frequency related to the frequency of the Bloch oscillations (the
Stark ladder)?
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2. Is the negative differential conductivity associated with ““latent™ Bloch oscillations in
the system?

3. Up to what frequencies is a generation of oscillations possible (i.e., up to what fre-
quencies does the negative differential conductivity persist)?

Attempts have been made’® to clarify these questions through the use of semiclas-
sical description of the dynamics of electrons. Along that approach, however, it is not
possible to completely establish the relationship among the negative differential conduc-
tivity, the Bloch frequency, and the band properties of the superlattice. The quantum
description in terms of the nonequilibrium Keldysh technique” makes it possible, in our
view, to take a deeper look at the relationship among the quantization of the spectrum, the
negative differential conductivity, and the dynamic response of the system. The analysis
below reveals the following:

1. In the steady state, the generation frequency is not directly related to the frequency of
Bloch oscillations.

2. The successive “‘shutting™ of conducting channels through the superlattice with in-
creasing voltage due to the finite widths of the miniband and of the band in the
electrodes is responsible for the negative differential conductivity.

3. The real part of the differential conductivity exhibits a dispersion at frequencies which
are multiples of the Bloch frequency, Qg,=n Qg (n=12,...,N, where N>1 is the
number of Stark levels in the superlattice), and remains negative up to frequencies
N-Qp which are well above the Bloch frequency Qp.

We consider a 1D superlattice of identical tunneling-coupled quantum wells. This
assumption is not of fundamental importance for our approach, since the general scheme
makes it possible to incorporate a longitudinal motion of the electron and to deal with
superlattices with a complex unit cell. These simplifications are necessary only for find-
ing a result in analytic form. We will assume below that the superlattice is connected to
metal bands (electrodes).

The spectrum of an isolated superlattice (one not connected to banks) can be found
by solving the eigenvalue problem for the Hamiltonian

N

+ +

HfE Cp Cregt 2 Tyci ¢ (1)
k=1 li-jl=1

Here g is a level in an isolated well, N is the number of wells in the superlattice, T is
the matrix element for a jump between neighboring wells, and ¢, is a creation operator
in the ith quantum well. We assume for simplicity that there is only a single Ievel in an
isolated well. In a constant and uniform electric field, Hamiltonian (1) should be supple-
mented with a term

ek N

k=1

where V is the constant voltage across the superlattice, and ¢ is the charge of an electron.,
Incorporating this term leads to a shift of the bottom of the kth well and level into an
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isolated well, in such a way that the energy of the level takes the form g,=¢,+ ¢k V/N
(in the case of a single level in a well, this is an exact representation, as follows from the
properties of the translation operator in an electric field'"). When there are several levels,
there is also a shift of the level with respect to the bottom of the well, due to a change in
the shape of the well in the field. This effect arises only in the second order of a
perturbation theory in the field. In the case of equal quantum wells, the spectrum of the
superlattice should be found from the self-consistent solution of the Schrodinger and
Poisson equations.

In our simplified case, a systematic account of the jump leads to the solution of a
linear system of N XN equations. From the solution we find the spectrum and wave
function of an isolated superlattice. We find it more convenient to work in terms of a
Green’s function. For Hamiltonian (1), the Green’s function is

N
gh=2

A=1

*
Aix- a5y

(2)

w—g\+i0’

i,j=1..., N,

where €, is the spectrum of the superlattice with allowance for the tunneling coupling
between wells and the electric field, N is the index of the eigenvalue, and a;, is the
amplitude of the wave function in well i corresponding to the Ath eigenvalue.

We describe the tunneling coupling between the banks and the superlattice by means
of the Hamiltonian

_ + + + + )
Hy=2 [Tppcfer,+ TrpcipCit Trpcncrpt TrpCrpcn]s 3
P

where ¢ Z_Rp are operators in the left and right banks, p is a continuous parameter which
describes the spectrum in the banks (e.g., a quasimomentum), and T, g, are tunneling
matrix elements between the banks and the superlattice. The current operator can be
written in the symmetric form''

o ie
()= —ﬁl—z {[TLPCTCLP- Tf],czpcl]-k[TRpc;ch—T;pc;c,gl,]}. 4)
P

To answer the questions raised above, we need to calculate the static current-
voltage characteristic and the small-signal response to a small alternating voltage at a
constant voltage V [the dynamic conductivity o(V,Q)]. The static current—voltage char-
acteristic can be found by averaging current operator (4) (see, for example, Refs. 12
and 13):

(5

2m R 2
Iz—ﬁ—f dCUFL((D)FR(w)lG]N(w\)‘h [fL(u))—fR(u))]. (5)

Here f; x are distribution functions in the left and right banks, with chemical potentials
My and pg; pp—pugp=eV; and G’fN(w) is the exact Green’s function of the superlattice
incorporating the tunneling coupling with the banks which describes the propagation of
an electron from well 1 to well N:
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where g’f,‘NN are the retarded Green's functions in wells 1 and N in an isolated super-
lattice, gf.R is the Green’s function in the banks,

1

R
P —— 7
g1 rlw) o e 10, (7)

&, rp s the spectrum in the banks, and, finally,

Iplw) =72 [T, o2 B0 =g p,) (8)
p

describes the rates of escape into the banks. Equation (6) incorporates multiple scattering
in the superlattice. In addition, because of the tunneling coupling with the banks, states in
the superlattice become quasisteady. It is for this reason that a current can flow through
the lattice.

The interaction with the banks has two effects: a shift of the levels in the minibands
and the onset of damping. If the tunneling coupling with the banks is weak, it follows
from (6) that pole singularities in GTN(w) arise at energies w=g, +iv,, where ¢, are the
levels in the minibands in an isolated superlattice, and v, is the damping due to escape
into the banks (the level width is y,~T; +T'x; for a single quantum well this is an exact
equality'?). Consequently, the Green's function in (6) can be written

Nooaalk

R 1a Ay

GRS 2 (9)
Ao w—E, Ty,

where a, y, is the amplitude in wells 1 and N for level g, in the superlattice. If the wells
are weakly coupled with each other, the spectrum in the minibands is almost identical to
the levels in the individual wells. In other words, with the levels numbered appropriately
we have e,=¢; (g,=gotkeV/N,k=1,2,...N).

We finally find [we are assuming a zero temperature; in this case we have
frr(0)=0(u, g—o)]

M1 |alx’z\am|
[=2meh r r —— = dw 10
™ % ‘[HR o) R(w)(‘“’"ex) +yn (1

At low voltages, expression (10) can be put in the form

27TC’
VE 7o) (11)

where the transmission coefficient for energy level N in the miniband is
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FIG. 1.
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We have also noted that in the limit V=0 the chemical potentials satisfy p; = ug=p. It
is simple to verify that the descending region of the current—voltage characteristic begins
at voltages V=(u, —¢&.)/e (Fig. 1). Beginning at these voltages, the only contribution to
the current comes from those levels in the superlattice which lie below w; but above the
bottom of the conduction band of the bank, £. (Fig. 1). As the voltage V increases, the
next energy level in the superlattice finds itself below the bottom of the conduction band,
g.. The current channel associated with this level stops working, since we have
I (w)=0 at w<e, [see Eq. (8)]. On the descending region of the current—voitage
characteristic we have

2me? ML T E,
I=— % INEN kvl (12)

The last factor here is essentially the number of levels in the interval e .<e,<pu, .

The finite width of the band in the banks and the miniband is thus responsible for the
negative differential conductivity. The negativity of the conductivity stems from the Stark
ladder.

We now wish to find the dynamic conductivity, i.e., the response to a weak alter-
nating signal u(t) against the background of a constant voltage V. The perturbation
Hamiltonian is

N

k
5H——-kz eﬁu(t)c;ck-l-E eu(t)c;{pcRp. (13)
=1 P

For definiteness, we assume that the potential is zero at the left bank. In this case the
alternating component of the current can be written as follows, by analogy with Ref. 12:

i(z)=f a(t—1 (), (14)
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In taking an average over the Keldysh contour we should single out the retarded compo-
nent of the polarization operator. Going through calculations like those of Ref. 12, we
find the expression

N

k
U(Q):zﬁjdeI —{[FL(()+w)fL(Q+w)Gﬂ‘k(Q+w)G’|‘k(w)
k=1
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N
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1
—2[TR(Q+ 0)f {2+ @)~ Tr(w)fi(@)] g = [GIV(Q+0)Gh ()]

X[T QA+ w)+ T (0) =T Q+w)+T{w)]. (15)
Terms of the type
2 gﬁ])(‘(l+w)‘TRpI:gll§p(w)
I)

have been omitted from (15). Such terms vanish if we ignore the energy dependence of
the density of states in the banks. Here Gfk is the Keldysh Green’s function, for which the
following expression can be derived:

1 5
a2 {[311|TL| 81 glk+glN’TRl gRgNk] [1—- gglrk|”8/wv]
“~ Det]?

+ gl TRl2gR LehnI TRl gx ai+ &N TrI*gR ghe 1} {16)

We now consider the response in the voltage region corresponding to the descending part
of the current—voltage current characteristic. To simplify the analysis we assume that the
voltage V is so high that there are no levels at energies below wup (Fig. 1). In this case we
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have fr(e,)=0, and all terms other than the first two in (14) are irrelevant. In addition,
we have I';j(w)=I"; =const at @>¢_. and I';(w)=0 at w<e.. We can thus write the
differential conductivity in the form

2 2
¢ lai]*layy:

V.0)=2i .
ol )=2i ﬁ}\.EA' [Q—(ern —e))—i(yy =]

! 2

1
w—s)\'—i')/)\—(u‘FQ“E)\r—iY)\/}
1
w—e\tiy, wt+tQ-—g+iy,.

XJ dwlrL(uH-Q)fL(aH-Q)

—I'j(w)f(w)

]. (17)

The summation in (17) is over only those levels which lie in the energy interval
£.<&, \r<p;. Analysis shows that at large bias voltages (Fig. 1) the real part of the
conductivity at zero frequency is negative (the imaginary part is correspondingly zero),
and it approaches zero, remaining negative, as

eiT

Reo(V,Q—)=—— =2 [a; ) fayl® (18)
AN

Figure 2 shows the frequency dependence of the conductivity in the case in which y, is
a constant (I';) and is independent of the level index, and in which we also have
g)=h{gh. This corresponds to a very narrow miniband (weakly coupled quantum
wells). For simplicity, we have assumed that |a, \|*|ay ,+|* is a constant (independent
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of A). This simplification is sufficient for a qualitative analysis; in general, it would be
necessary to solve the problem of finding the spectrum and damping through a solution of
a system of linear equations.

The real part of the differential conductivity thus remains negative even at frequen-
cies above the Bloch frequency Qz=¢Ed/f and at multiples of it, Q=kQp . The nega-
tivity of this conductivity is in no way related to the Bloch frequency. The negative
conductivity of this frequency implies that a generation of radiation is possible (if there is
a corresponding resonator). The frequency of the radiation will be determined by the
parameters of the external circuit.

There is an analogy with generation in a laser and in a superlattice with a negative
differential conductivity at a large bias voltage. For generation to become possible in a
laser, a population inversion must be set up. This means that the states in the conduction
band (for definiteness, we are considering a semiconductor laser), with a relatively high
energy, must have a higher population than states in the valence band, with a relative low
energy. In this case the absorption coefficient (the conductivity at the corresponding
frequency) becomes negative. In a superlattice with a large bias voltage (Fig. 1), the
population of the levels in the interval [u;, £,.] is higher than for levels with energies
below &.. This point can be understood at a qualitative level. A quantitative analysis of
the population, on the other hand, will require determining the Keldysh Green’s function
G} in an arbitrary well. For this problem it is a straightforward matter to find an expres-
sion analogous to (16) (where necessary, the contribution of inelastic processes to the
damping 7y, should be added). In this sense, the physical reason for the generation is
totally unrelated to the Bloch frequency (Stark quantization). For example, placing a
superlattice in a charged plane capacitor, but without electrical connection between the
superlattice and the plates, results in a Stark quantization of levels. Obviously, however,
no radiation will occur, since states in the superlattice are stationary states. The negative
differential conductivity is directly responsible for the generation of oscillations. The
physical reason for the generation is essentially the same as in laser systems. Generation
can occur if a population inversion is set up. This can be done either by connecting to
electrodes (as discussed above; in this case there is steady-state generation because of the
constant replenishment of the population) or through a temporary scattering of carriers
into upper levels (by means of laser light, for example) into a superlattice which is
isolated (but naturally in an electric field). In this case generation occurs in a transient
regime, until the populations become equal (through relaxation or recombination). In a
sufficiently strong field, in which the degree of localization of the electrons in an indi-
vidual well is high, the most intense radiation will obviously occur at the frequency
corresponding to the energy difference in neighboring wells. This radiation is frequently
called “Bloch oscillations.”'*

We note that, as was shown in Ref. 10 on the basis of simple qualitative consider-
ations, the radiation intensity in an infinite superlattice of identical wells is zero. In a
finite superlattice, the intensity is determined by the distribution functions in the outer-
most wells. Steady-state generation is thus possible only in a finite superlattice, and it is
essentially an edge effect.
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