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Reductions of the self-duality equation of the Yang—Mills model in d =4 in terms
of the action of continuous symmetry groups lead to systems of differential
equations in a lower dimensionality. An algorithm is written for reducing a Lax
pair for self-duality equations with respect to an arbitrary subgroup of the
conformal transformation group of R* space. The compatibility condition for the
reduced Lax pair is shown to be the same as the self-duality equations

reduced in terms of the action of the same symmetry group. The general scheme
is illustrated with three examples.

1. The self-duality equations of the Yang—Mills model in Euclidean space R* with
the metric J,,, were introduced in a landmark paper by Belavin, Polyakov, Schwarz, and
Tyupkin.! A Lax pair for the self-duality equations was written by Belavin and Zakharov.?
The self-duality equations are thus integrable both by the method of the inverse scattering
problem2 and by methods of twistor theory.® Also integrable are the self-duality equations
in R*? space with the pseudo-Euclidean metric (g,,)=diag(1,1,—1,-1,) (Ref. 4). A
reduction of these equations to the equations of modified chiral model in R%! and their
- integrability by the method of the inverse scattering problem were studied by Zakharov
and Manakov.’

It has recently been shown that numerous integrable equations in (1+0), (1+1),
(0+2), and (1+2) dimensions (the equations of a generalized Kovalevskaya top, the
P\—Py, Painleve equations, the Korteweg—de Vries equation, the Boussinesq equation,
the N-wave equation, the Ernst equation, the Kadomtsev—Petviashvili equation, and oth-
ers) can be derived through a reduction of the self-duality equations.®™ The self-duality
equations in d=4 thus play the role of a universal integrable system, from which many
other equations can be derived through a reduction in terms of symmetry groups and
through the imposition of algebraic constraints on the Yang—Mills potentials. The litera-
ture reveals no general method for reducing a Lax pair for self-duality equations. In most
cases, the reduction is carried out with respect to a subgroup of the translation group. The
Lax pairs corresponding to the reduced equations are found through a trivial reduction of
the Lax pair for the self-duality equations.

In this letter we describe a reduction of the Lax pair of the self-duality equations
with respect to an arbitrary subgroup of the conformal transformation group of R* space,
which is isomorphic to the SO(5,1) group. The condition for compatibility of the reduced
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Lax pair leads in turn to self-duality equations which are reduced with respect to the same
subgroup. Although the reduction algorithm is written in this letter exclusively for Eu-
clidean space R*, it can also be applied, after certain modifications, to the reduction of
the Lax pair of the self-duality equations in R%:2.

The Lax pair introduced for the Ernst equation by Belinski and Zakharov'®
contains a derivative with respect to a spectral parameter. We will show that derivatives
with respect to a spectral parameter arise in a reduced Lax pair if and only if the sym-
metry group contains one generator ¥ of the “anti-self-dual” subgroup SO(3) of the
SO(4) rotation group of R* space (an explicit expression for Y is given in Sec. 3).

2. We denote by A , the Yang-Mills potentials in R* with values in the Lie algebra
gl(n,C). The self-duality equations are!

1
5 €uvpol po=F s 1)

where w,v,..=1,...,4; F,,=d,A,—3d,A,+[A,, A,] are gauge fields of the Yang—
Mills model; d,,=3d/dx*; and €,,,,, is the Levi—Civita density in R* (€1234=1). A Lax
pair® for Egs. (1) can be written

[D;+iDy—ND3+iD )V (x,\)=0,
[D3—1D4+)\(Dl—lDz)]‘P(x,)\)ZO, (2)

where D ,=d,,+A,, and ¥ € C" is a vector function which depends on the coordinates

x, of R 4 space with the metric § v and also on the complex parameter A € C P!. For the
mathematically oriented reader we note that ¥ is a section of the complex vector strati-
fication E=ZXC" given on the space of twistors Z =R*XCP! for R* space.*"" Equa-
tions (2), along with the equation d¥/0A =0, mean that the stratification (fiber bundle) E,
which is a lifting of the bundle E=R*X C" with self-dual connection, is holomorphic.>""

It is simple to verify that the vector parts V;=40,+id,—A(d3+id;) and
V,=0d3—id4+ N(3;—id;) of the differential operators in (2) determine a basis of anti-
holomorphic vector fields with respect to the following complex structure J* in R*
(Ref. 11):

Jh=—6*"7%

a
O'Vsﬂ’

where 75, ={ep., o=b, v=c; &, o=4; —&, v=4} are the ’t Hooft anti-self-dual
tensors;'? a,b, ...=1, 2, 3; the s, parametrize S>=CP'(s,s,=1); and A=(s,+is,)/(1 +53).
We find a definition of the 't Hooft self-dual tensor 77, if we change the signs of &% and
&, in the expression for 7,. Using the identities for 't Hooft tensors,'> we can easily
show that we have J4J7= — &%, JhVi= — V¥, and JEVI= — V%

3. Both the self-duality equations and their Lax pair are invariant under the
conformal-transformation group SO(5,1) of Euclidean space R*. We will now formulate
a general algorithm for reducing a Lax pair for self-duality equations with respect to an
arbitrary subgroup G of the SO(5,1) group.

A. First, we specify a homomorphism of the Lie algebra so(5,1) of the
SO(5,1)group into a Lie algebra of the vector fields X, [£ € so(5,1)] in R*:
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1
X“=7]Z,,xﬂ¢9v, Y”=f;;,,x#z?,,, P, =4 Kﬂzi—xoxgaﬂ—x#D, D=x,4,, (3)

w- %
where {X“} and {Y*°} are generators of two commuting SO(3) subgroups in SO(4), the
P, are translation generators, the K, are generators of special conformal transformations,
and D is a dilitation (or extension) generator.

B. Second, we must determine the action of SO(5,1) on Z which conserves the
holomorphic nature of the bundle E — Z. This is possible if, after the elevation
X—X,, the generators in (3) on Z, X ¢ are infinitesimal automorphlsms of the complex
structure J4 in R* and of the canonical complex structure €; in RZCCP' (Ref. 13):

,,%)ggJ‘,‘fEXg Jh+Jr X"’V—Jg ng(,=(), Véieso(5,1),
%,‘(fe}EA}ge;-f-ei X’g‘j—eﬁ’gk=0, Véeso(5,1), 4)

where 7 X is a Lie derivative along the vector field X gonZ; ef = - 62 1; and i,j,...
=1, 2. We are using local coordinates y; on the sphere §2 = CP!, which are related to the
coordinates s, by the equations y;=s,/(1+5s3), y, =5, /(1 +53), y1+iy,=\. The nec-
essary realization of the Lie algebra so(5,1) as the subalgebra {X,,£e50(5,1)} in the
algebra of vector fields on Z is given by

Xe=x°, Y°=y*+2z°, P,=P,, K,=K,+#n%x,Z° D=D, (5)

where the generators Z° of the SO(3) rotation group on S? are given by
Z,= €48 s

It is simple to verify that Eqgs. (4) do indeed hold for vector fields (5).

C. To reduce the linear system (2) with respect to the action of the subgroup G of the
conformal group, we impose the conditions of G —invariance on the potentials A , and on
the vector function W(x,\) (Refs. 13 and 14):

%XgA;LEX‘fAﬂ+Ang,#=07 erfﬁ, (63)
Y3 Y=X¥=0, Vies, (6b)

where ¥ is the Lie algebra of the subgroup G CSO(5,1). For simplicity we are restricting
the discussion to strict-invariance conditions (6), although A , and ¥ in general, could be
invariant within gauge transformations.!®

D. In accordance with the general method of reduction with respect to symmetry
groups (see Ref. 14 and the papers cited there), we choose as the “new” coordinates on
Z the coordinates 6, on orbits of the G group and also the invariant coordinates 6, and
¢, which parametrize the orbit space and which satisfy the conditions

p) ) _
— =0, Yy 0,=X0,=0, Yil=X[=0, Vées. 7

N

885 JETP Lett., Vol. 59, No. 12, 25 June 1994 M. Legaré and A. D. Popov 885



We call the invariant complex coordinate { the new “spectral parameter.”

The most general form of G-invariant potentials A,, which are solutions of
Eqs. (6a), can be written in terms of the g/(n,C)-valued functions of the invariant
coordinates 6, and the functions of the coordinates @, on the orbits. The solution of
Egs. (6b) on the other hand, is an arbitrary function of the invariant coordinates:
V= ‘p( BA ’ { ) ‘

E. We must substitute the functions A, and ¢ into Lax pair (2). We then obtain a
reduced Lax pair as a system of two linear differential equations in terms of functions of
invariant coordinates. The compatibility condition for this system is the same as the
self-duality equations reduced with respect to the action of the G group, as follows from
the general theory of the reduction of differential equations with respect to symmetry
groups.'* If the generators of the group G contain one of the three generators Y, intro-
duced in (3), then-the reduced Lax pair will contain derivatives with respect to the new
spectral parameter {. The reason is that elevation Y,—Y, on Z=R*xS5? is nontrivial,
and the Y, rotations which are generated are combinations of rotations in R* and S2.

4. We will illustrate the scheme described above by means of three examples of the
reduction of Lax pair (2) in terms of Abelian symmetry groups, one of whose generators
is Y3. A nontrivial reduction in terms of a non-Abelian subgroup SO(3) of the SO(5,1)
group was described in Ref. 16.

Example 1. We consider a 1D Abelian group SO(2), which is generated by the
vector field Y>. On R*X CP! we introduce the variable ¢ (a coordinate on an orbit) and
the invariant variables {r,R, x,{=a exp(—in)} (r,R,a>0, 0<¢, x,7<27) which satisfy
(7) and which are related to the coordinates {x,,A =a exp(—ié)} on R X CP! (0<é<2m)
by

x|=rcos|x—¢ — » , Xp=-—rsin{xy—¢ — 7 , X3=R cos X+¢p+2 ,
4 4 4
x4=~—R sin X+<p+g s §=g —2¢=>h={exp|i g+2go }
For the vector field Y> elevated on Z we find
Y3=x10,— %30y~ X395+ x435+ 2i(NI\— N35) =9,
A solution of Egs. (6a) is
7 . 7
Ai=a, cos()(-<p vy +a, sm(x—qa - Z)’
. 7
Ay=—asinf x—¢ — 7 +a, cos| x—¢ — +J,
4 4
7 . n
Aj=aj5 cos{ y+ <p+z +ay sm(x+<p+z ,
. 7 Ui
A,=—ajsin X+(P+Z +a, cos X+(P+Z , 9

886 JETP Lett., Vol. 59, No. 12, 25 June 1994 M. Legaré and A. D. Popov 886




where a,,=a,(r,R,x). A solution of Eqs. (6b) is ¥ = /(r,R,x,{). Substituting (8) and
¢ into Lax pair (2), we find the reduced system

1 1
VXl//E(X+AX)¢//=[0,—§0R+(£ - ;)i&x+(;+%) §(9§+a1+ia2—§(a3+ia4)}l[1

R
=0, (9a)
1 4. ¢ 1 . .
Vyy=(Y+Ay)y= {6,+8R+(E +7 z&x—(; - E)§3§+a3—ta4+§(al—za2) i
=0, (9b)

where the vector parts in (9a) and (9b) are denoted by X and Y, respectively. Self-duality
equations (1) reduce to®

1 1
o",a3—-t9Ra1 —c? a4+

R a2+[a2,a4] +[ay,a3]=0,

1 1
&a4+¢9Raz+ 0 a3+

R da,+[ag,a4]+[asa,]=0,

1 1 1

dras=dartpay — T aytp dy a;—[ay,az)+[as,a4]=0 (10)

and are the same as the compatibility condition [V, Vy] — Viy y) = 0 of Lax pair (9).

Example 2. We now consider the 2D Abelian subgroup SO(2)XSO(2) in SO(5,1),
which is generated by the vector fields X> and Y>. The orbits are parametrized by ¢ and
X, and the space of orbits is parametrized by the invariant coordinates r, R, and

=N exp[ —i (3 7+2¢)]. After an elevation on Z, the vector fields X* and Y> take the
form X3 — d,, and Y3 =

A solution of Eqs. (6a) has the form of (8) with a,, = a, (r,R), while a solution of
Eqgs. (6b) is of the form ¥=y(r,R,{). A reduced Lax pair can be found from (9) by
setting J,¢=0. The reduced self-duality equations in turn follow from (10) in the case
da,=0.

Example 3. We now consider a 3D Abelian subgroup of the SO(5,1) group with the
generators Y3, P;, and P,. Here we have

)73=x1¢92—x2¢?1—x36‘4+x483+2i(7\o”)\—}:6§\)=é“p, i’3:(93, 134:(94,

where x,=rcos(x+n), x,=—rsin{x+7), A=aexp[i2(n—yx)}, r,a>0, 0<y, and
7<2m. As the coordinates on the orbits we have selected x, x5 and x,; as the invariant

coordinates we have selected r= \/xl +x2, (=N exp(i2xy—i3n)=a exp(—i7). The invari-
ant Yang-Mills fields are

Ap=ay(r)cos(x+n)+ay(r)sin(x+7), Az=—a(r)sin(x+7)+az(r)cos(x+ 7),

As=as(r)cos(xy+ n)—a,(r)sin(x+7n), As=az(r)sin(x+ )+au(r)cos(x+ n), a
1
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and ¥ = y(r,{). After substitution of (11) and ¢, Lax pair (2) reduces to the system

2
grt= §3§+al+iaz’§(a3+ia4)}l/’=0’

Y=0. (12)

2
[w, -7 Po+az~iagt(a,—iay)

It is simple to verify that the compatibility condition for system (12) is the same as the
self-duality equations reduced with respect to the same subgroup, SO (2)XSO0(2):

1
dz*‘; a,+(ay,a;]+[ay,a5]=0,
1
as=— az+{ay,a3]1+{aza,]=0,

o1
L2 - as+lay,a4]+[a3,0,]=0, (13)

where a, = da, /dr. After the change of variables t=Inr, u;=ra,, u,=r"la,,
uz=r 'a,, and after the choice of gauge a,;=0, Eqs. (13) become the modified Nahm
equations which we discussed in Ref. 8.
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