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A time-dependent distribution function is derived for an ion which is cooled by
laser light in a trap with an oscillating potential.

High-precision measurements of the frequency positions of the centers of transition
lines of ions, which are cooled in radiofrequency (Paul) traps, raise the hope for their
applications as rf and optical clocks (Ref. 1, for example). These applications stiffen the
requirements on the accuracy with which the motion of the ions in the trap is described.
All the existing theoretical results have been derived through the use of a
pseudopotential. > That approach makes it impossible to describe the effect of micromo-
tion on the ion distribution in a trap. It makes it also impossible to evaluate the distortions
in the ion absorption spectrum which stem from this motion.

In this letter we offer an exact solution of the Fokker—Planck equation for the
coordinate—velocity distribution function p(x,v,t) of an ion being cooled in a Paul trap:
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F=mla+b cos(Q2t)]x.

Here F is the force acting on an ion in the trap (this force oscillates in time), and m is the
mass of the ion. The right side of (1) describes the effect of the cooling laser field,
mpBu is the friction force, and D is the diffusion coefficient in velocity space.>** To
simplify the discussion we will use a 1D equation; the generalization to the 3D case is
obvious.

Following Ref. 5, we transform from (1) to an equation for the Fourier transform of
the distribution function:
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fl& nt)= j exp(ivé+inx)p(x,v,t)dxdv.

Along the trajectory defined by the equations

E=—p+BE p=-[a+h cos(Q)]E, )

the left side of (2) is a total time derivative, df/dt= —D &*(t)f. We can thus write

5 0021-3640/94/010005-04$10.00 © 1994 American Institute of Physics 5



f)=fol&o,mo) exp(—Dforfz(t)dt), 4)

where fy(&,n) is the Fourier transform of the distribution function at =0, and &, and
17, are the coordinates of the trajectory at 1=0.

From Egs. (3) we have

E—BE~[a+b cos(Qt)]é=0. (5)
For the function y=exp(—B1/2)&(t) we find the Mathieu equation®
x+[A—~Bcos?(Qt/2)]x=0, (6)

A=b—a— %4, B=2b.
A general solution of that equation is
X_:Ceiwl E a”einﬂt_*_c*e—iwr 2 a:re—inﬂl, (7)
n=-—-x n=-—-x

where C is an arbitrary constant.

A procedure was worked out in Ref. 6 for finding the frequency of the secular
motion, w, and the coefficients a, . That search can be carried out with any prespecified
accuracy. Solely to simplify the problem, we make use of the circumstance that the
conditions B<w<() and |a |, [a _,|<|a,| hold in the traps ordinarily used. From (3), (6),
and (7) we find the following expressions, within terms on the order of w/{}, inclusively:

E=eP(Cel'+ C*e Y[ 1+ acos(§1)],
n=eP"HCe' [ —iw+ aQsin(Qt)]

+C*e “iw+af) sin(Qt)]}, 8
a=-b/Q%, w'=a’Q*2—a, |aj<l, |a|<Q?

We now need to carry out the time integration in (4). Ignoring the oscillating terms,
which make only a small contribution, we find

D-2|c]?
f(g,ﬂ,f)=f0(§oa770)exl) -T[eﬁ—l] > (9)
§0=C+C*, 770=iwC+iwC*.

To find the final result, we can express the quantities C and C* in Eq. (9) in terms of the
instantaneous values of £ and ), making use of Eg. (8):

C=1/2[é+in/w—igé sin(Qr)]e 2  g=a/w. (10)

Equations (9) and (10) give us the Fourier transform of the time-dependent ion distribu-
tion function in a Paul trap for an arbitrary initial distribution function. For large time
intervals 131/, this function becomes independent of the initial conditions [the normal-
ization condition gives us f(§=0,7=0)=1] and takes the form
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£+ 17— —2q§— sin( Q1)+ g2 £sin’( Qt)” (11)

fl& n,t)exp{ by

or, in terms of the customary coordinates,

Bw

p(v,x,t)= D EXP

- é%{xzwz[l +q%sin(Q)]+v+ 2xvqsin(Qt)}). (12)

The coefficient 2D/ depends on the particular cooling scheme. Under optimum condi-
tions it is>>>7 2D/B~hT in order of magnitude, where T is the radiative linewidth of the
transition used for cooling.

If the initial distribution function is a &function py(x,v)=8x—xy)é(v—vy),
which corresponds to f(£, 7) = exp(iveé+ix, ), then the inverse Fourier transform of (9)
can be found analytically. The resulting Green'’s function is

w
p(x,v;x(,,vn,t)=;S expl —S¢(x,v,1)], (13)

o(x,0,8)=[ wx —[ wxgcos(wt) +vysin( wt) e~ FR)?

+{v+ wxgsin(Qr) — [vycos( wt) — xywsin( wt)]e ™ F2}2,

B B
S—z—D(l—e )

Under the condition Bt>1 this function is the same as (12).

It can be seen from (12) that the limiting distribution function is not a Maxwell—
Boltzmann distribution, and to introduce the concept of a temperature is generally not
legitimate. Integrating (12) over the coordinate, we find

[ otwnsoe o) ol - s
G0 | o X D= b s ani) P\ 72D T+ g%mi( @0/

This expression has the form of a Maxwellian distribution with a time-modulated tem-
perature kgT= (mD/,B)[l +g- 51n2(Qt)] The mean temperature is kgT7'=(mD/j)
X(1+4g%/2); here (g*/2)(1+4%2)~ " is the fraction of the energy associated with the
micromotion.

The 3D potential of the trap is =[U+ Vcos(ﬂt)](x2+y2——222); i.e., the quantities
a; and b; are related by a,=a,= —a./2=ay, by,=b,=—b,/2=b,. The fraction of the
energy of the micromotion in the 3D case is therefore (2—L—2L%)"' where
L=a,0? /b . We thus see that half of the total energy is in the micromotion in two
cases:’ the case L=0 (there is no static potential; w,=w,=w,/2) and the case
L=- 1/2 (w0, =w,=w,). It can be seen from (8) that the condmon for stability of the

trap (w;>0) is '1<L<1/2

Using the relation m<uv?>/2=kgzT;, we can calculate the frequency shift A due to
the second-order Doppler effect which is a quantity of importance for a frequency stan-
dard:
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Here w, is the frequency of the resonant molecular transition. This quantity increases as
the stability boundaries are approached. The minimum value of A is reached in the case
L= —1/4, which corresponds to w; = wf. =wl/2.

Collisions with the surrounding gas may have an important effect on the ion distri-
bution function and on the limiting temperature. If we use the weak-collision model™® to
describe this effect, we find that solutions (9) and (12), and also Green’s function (13),
remain the same in form upon the substitution S—B+u and D—-D+ ,tw(z,/Z, where u is
the collision rate, and v(z) is the mean square velocity of the gas molecules. Using the
Green’s function or, more precisely, its Fourier transform (9), we can calculate the cor-
relation function® and solve the problem of how the micromotion and collisions affect the
shape of the absorption line of an ion being cooled in the trap. Such calculations require
stating more clearly the conditions under which the measurements were carried out.
These calculations will be carried out in a more-detailed publication.
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