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A system with an exponentially broad distribution of resistances is analyzed for
the case in which the distributions of fields and currents within each of

the resistances play an important role. This situation is inherent in a continuum
problem. Allowance for these distributions further increases the relative

spectral density of the 1/f noise in comparison with that of the discrete problem.
A critical exponent of the relative spectral density is derived. It contains a

term which is attributable to the nonuniformity of the current and field distributions
within each resistance.

The relative spectral density of the 1/f noise in a uniform conductor is described
well by! C=wVS/R?, where Sg={S8R SR} is the Fourier transform of the correlation
function of the fluctuations in the resistance R, V is the volume of the sample, and w
is the frequency. The relative spectral density C is a constant of the material. According
to Hooge’s hypothesis,” we have C=a/n, where n is the density of free carriers. The
universal coefficient @~ 1072 is known as the “Hooge constant.” In a nonuniform con-
ductor, on the other hand, the total noise of the sample is characterized by C*:

. {(C([E(r)-j(n]?)
T EM)-Gn)F

where {...) means an average over volume, and E(r) and j(r) are the local electric field
and the local current density.

(1)

It is clear from (1) that in order to determine C¢ we need to know the detailed
distributions of the fields and the currents. The nonuniformity of the distribution is more
important for the 1/f noise (the fourth moment) than in a determination of the effective
conductivity (the second moment, o-"=<E-j)/(E)2). Since the fourth moment generally
cannot be expressed in terms of the second, various models of the nonuniform medium,
which can be used to find E(r) and j(r), are employed in order to determine C¢ (Refs. 3
and 4).

The most general case of nonuniform medium is a semiconductor with a large-scale
potential well V=V(r) which modulates the bottom of the conduction band.>® If the
potential varies sufficiently smoothly (if the length scale of the potential satisfies b>1,
where the right-hand side is the mean free path), then one can introduce a local electrical
conductivity o(r)=eu-n(r), where u and n(r) are the mobility and density of the free
carriers. For simplicity, we assume that the mobility is independent of the coordinates
(for example, the only scattering is a scattering by phonons). In the nondegenerate case,
the density is modulated by V(r) in accordance with n(r)=nyexp{—V(r)/kT}. The prob-
lem of determining an effective conductivity of the system is thus analogous to the
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problem of finding ¢° for a medium with an exponentially broad distribution of
resistances.” The effective conductivity of the system is governed by the carrier density
near the percolation level V_ in the potential V(r) only at an exponential accuracy.”’® As
was shown in Refs. 9 and 10, in determining the preexponential factor we need to assume
that the system is in the diffuse (smeared out) region A. This approach requires more
detailed knowledge of the structural elements of the percolation conducting cluster, be-
cause the resistance of the system is governed not only by a saddle point of height V. (the
“key resistance” in the terminology of Ref. 11) but also by other saddle points, which are
the analogs of the resistances of bridges and interlayers.** The number and heights of the
saddle points are determined by the size of the diffuse region A. The size of A was found
in Refs. 9 and 10.

In a calculation of the integral properties of continuum systems, the primary ele-
ments of the percolation structure are thus saddle points of the random potential which
are near V... In the simplest case, V(r) is characterized by a single energy scale, V,, and
a single spatial scale, b. Near any saddle point the form of V(r) is then universal:

VO 2 2 2
Vin=V.+ —b-(—x“+y“+z'), 2)

where V is the height of the saddle point. To determine the resistance of each saddle
point we need to know the distributions of fields and currents in the vicinity of the saddle
point. According to Ref. 6, we have

n(r)=ngexp(—(y?+2>—x2)/L%), n,=ngexp(—V,/kT), 3)
where L=bVkT/V,, and
E,=E,+0, EX=(¢0/L\/;)exp(—x2/L2), j=eun(r)E(r), (4)

where ¢ is the potential difference across the saddle V. The resistance of the saddle
point, R, is thus one of the actual resistances in the exponentially broad spectrum; it is
equal to R=1/( JrLen M). A distinctive feature of continuum problems has emerged in
{3) and (4): The length scale b of the system (which is an analog of the minimum size in
a lattice problem) has been joined by a new length scale L <€b, which determines the
microscopic geometry of the key resistances.

We can now formulate a standard grid problem concerning the effective conductiv-
ity. We partition the whole medium into cells with a size on the order of b, which is the
analog of the minimum size in the standard percolation problem. With each cell we
associate a resistance R, which can be written in terms of a random variable x:

R.= 1 ( VC—VU) Cax 5)
" v2meubnhV? =P kr)° (

where A=2V,,/kT> 1, and x is a random variable which lies on the interval [0, 1] (there
are no correlations over distances greater than b). As usual, we assume that the distribu-
tion of this random variable is uniform.

According to Refs. 7-10, the effective conductivity of the medium is
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a)— &y

2 1
3 +v(d—2)+§, (6)

o‘=alx )N, y=

where we would have «; = a» =1 according to the NLB model. According to the weak-
link model, we would instead have a,=¢—v(d—2) and a>=qg+v(d—2), where v is
the critical exponent of the correlation length, and r and g are critical exponents of the
conductivity above and below the percolation threshold of two-phase systems. In the 3D
case under consideration here we have v;=0.9, 13=1.7 and ¢;=0.7. The extra 1/2 in the
critical-like exponent y is associated with a redistribution of the fields and currents in the
key resistances. A corresponding effect in the so-called Swiss-cheese models'” leads to a
change in the critical exponent for the conductivity of two-phase systems, ¢.

Here, in contrast with Ref. 10, we need to determine C,, i.e., the noise in each
resistance s associated with the microscopic geometry of this resistance, before we cal-
culate C*. Using Hooge’s hypothesis C=a/n and (1) and (4), where {...) is now an
average over a volume on the order of the length scale of the potential, b, we find

@ <b >3erf3(2b/L)

T on, L erf°(b/L)

s (7)
Since we have b/L> 1, expression (7) becomes the following expression, within terms on
the order of exp(—b/L):

a [b\?
C‘:; R (8)

Allowance for the strong variations in the distributions of currents and fields near the
saddle point causes the amplitude of the 1/f noise to increase significantly, by a factor of
(b/ILY>=(Vy/kT)¥?, at each saddle point.

Once we have determined the noise amplitude in each resistance, (8), the problem
reduces to the solved problem of determining the effective properties of a medium with
an exponentially broad spectrum of resistances.'” In our notation we find

L [ Vg7 3

ce= ;; ﬁ S ‘y>z +m, (9)
where m=(t—¢q)/2+2v. It can be seen from (6) and (9) that the effective spectral
density of the 1/f noise in a nonuniform semiconductor with a large-scale potential well
is higher by a factor of A>**¥? (>1) than in a uniform semiconductor with the same
resistivity. The factor 2v arises in the ordinary system of an exponentially broad spectrum
of resistances, while the power of 3/2 is attributable to the microscopic geometry: the
geometric shape of the regions which determine the resistance of the whole system. This
additional increase in the noise is yet another example'*~'* of an effect of the microscopic
geometry on the size of the critical exponents of the relative spectral density of the 1/f
noise. We have thus clearly demonstrated a relationship between a deviation of the
critical exponents from universal applicability, on the one hand, and the microscopic
geometry, on the other.

As can be seen from (9), Hooge’s hypothesis is not valid for describing the noise in
the overall nonuniform system. The reason is that the relation C(r)= a/n(r) is not valid
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for the effective values C“= a/n,,, where n,, is an average density found experimentally.
It is important to note that n,, depends on the measurement method. In a strong magnetic
field, for example, we would find ny,=(n) from Hall measurements, while the density
found from measurements of the magnetoresistance of the same sample would be!®!
n,=n, [n./{n)~exp(—V/kT)]. We are therefore not surprised by the large scatter in
values which was mentioned in Ref. 1 (Table II).

Expressions (8) and (9) also give us a “rule” for the decrease in the relative spectral
density of the 1/f noise: a decrease in the nonuniformity of the system (V/kT). There are
two ways to achieve this goal. First, we could increase the density of mobile carriers in
the band, by means of photoexcitation, for example. The effect would be a screening of
the fluctuation potential and a decrease in V,;. The second possibility (a slightly para-
doxical method) is to raise the temperature of the electron gas. The Nyquist noise will of
course increase in the process. We do not know of any experiments designed expressly
for determining the temperature dependence of the amplitude of the 1/f noise in perco-
lation systems with a microscopic geometry. Published results (e.g., Figs. 18 and 19 in
Ref. 1 and Refs. 17 and 18) describe both increases and decreases in the amplitude of the
1/f noise with increasing temperature.
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