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Critical relaxation of the magnetization has been studied by numerical simulation
in the 2D Ising model with nonmagnetic impurity atoms frozen in lattice

sites. A square lattice with dimensions of 4007 was studied at spin concentrations
p=1.0,0.95, 0.9, 0.85, 0.8, 0.75, and 0.7. The dynamic critical exponent z

was determined by the Monte Carlo method and the dynamic renormalization-
group method. The following values were found for z(p): z(1)=2.24*0.07,
2(0.95)=2.24%0.06, 2(0.9)=2.24+0.06, z(0.85)=2.38+0.05, 2(0.8)=2.51%0.06,
2(0.75)=2.66=0.07, and z(0.7)=2.88*0.06. A singular scaling of the

exponent was found: z=A"-[In(p—p,)|+ B’ with the constants A’ =0.5620.07
and B' =1.62+0.07.

According to the hypothesis of dynamic scaling,' as the temperature T of a system
approaches the critical value T, such characteristics of the critical behavior as the
relaxation time 7 and the correlation length of long-lived thermal excitations of the
system, &7, are related by

In 7=f(In &), (1)

where f(x) is a generalized uniform function of its argument x. For most of the critical
phenomena which have been studied to date, the relaxation time of the system satisfies
Eq. (1) with a function f(x)=zx, in which the constant z—the “dynamic critical
exponent”’—is independent of the temperature. As a result, as T—T,., the system is
characterized by critical slowing of the relaxation time with

T~ &~ [T=T |77, (2

where vy is the critical exponent of the correlation length, which specifies the divergence
of this length at the critical temperature. Studies have shown that the numerical values of
the critical exponents, while depending on the spatial dimensionality of the system, d,
and on the number of components of the order parameter, are universal for a large
number of systems. The classification of systems which exhibit very diverse phase tran-
sitions into universality classes of equilibrium® and dynamic' critical behavior has made
it possible to introduce an unusual degree of order in the theory of phase transitions and
critical phenomena. Studies of the critical behavior of disordered magnetic systems with
randomly distributed nonmagnetic impurity atoms have made it possible to expand our
ideas regarding the factors which influence a systematic classification based on univer-
sality classes.” Studies have shown® that frozen impurities alter the properties of magnetic
materials whose specific heat in the homogeneous state has a divergence at the critical
point with an exponent a>0. This condition is satisfied by only those 3D systems whose
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effective Hamiltonian is isomorphic with the Ising model near the critical point. A
renormalization-group analysis making use of an e expansion™® has revealed that the
critical behavior of the disordered Ising model is characterized by a new set of critical
exponents. The values of these exponents are independent of the concentration of point
impurities, ¢inp, in the region with ¢;,<1—-p., where p  is the threshold for spin
percolation. The equilibrium critical behavior of dilute magnetic materials was analyzed
directly for 3D systems in Refs. 7 and 8; a corresponding analysis for the dynamic critical
behavior of such systems was carried out in Ref. 9. The experiments of Ref. 10 confirm
that there is a numerical difference between the static critical exponents for impurity
systems and those for homogeneous magnetic materials. Those experiments demonstrate
a good agreement with theoretical results.

Disordered reduced-dimensionality magnetic materials describable by an Ising
model are of particular research interest. Since the specific-heat exponent a of the ho-
mogeneous model is zero, the disorder resulting from the presence of an impurity has an
uncertain effect. A detailed analysis''!? of this case has led to the conclusion that the
impurity influences only the behavior of the specific heat; other thermodynamic and
correlation functions undergo no change in critical behavior. A field-theory analysis of the
relaxation regime of the critical dynamics of disordered 2D Ising-like magnetic materials
has shown” that this regime is the same as the dynamics of a homogeneous model in the
region with ¢;,,<<1—p, and is characterized by an exponent z=2.277. One question has
remained unresolved, however: Are the critical exponents of disordered systems univer-
sal? In other words, are they independent of the impurity concentration up to the perco-
lation threshold, or does there exist a line of fixed points which determines a continuous
variation of the critical exponents with the concentration?

Of particular interest in the critical behavior of disordered systems is the region of
high impurity concentrations, close to the percolation threshold. It has been suggested in
several papers'>™!° that the standard form of the dynamic scaling, (1), with f(x)=zx and
with a vniversal dynamic exponent z, is disrupted at the percolation level of the spin
concentration. It has been suggested that there is a singular dynamic scaling behavior in
(1) with f(x)=Ax>+Bx+C at p=p.. In this case one can introduce a temperature-
dependent effective dynamic exponent z( 7~ &°) of the following form:

z=A-ln £&+B, 3)

with z—x as {;—w% (T—0, p=p.). This form of the exponent z makes it possible to
explain the anomalously large value of this exponent which has emerged from neutron-
scattering measurements'® in Rb,(Mgg 4 Coqs)F4. Several numerical simulations of the
critical dynamics of disordered systems at p=p, and near the percolation threshold'’~*
have confirmed a quadratic form for the scaling function f(x) for the logarithm of the
relaxation time.

In this letter we are reporting a numerical simulation by the Monte Carlo method of
the critical dynamics of the 2D Ising model in the homogeneous case and also in the
cases with spin concentrations p=0.95, 0.9, 0.85, 0.8, 0.75, and 0.7. This is the first
study of the critical dynamics of disordered systems over such a broad range of impurity
concentrations. It thus becomes possible to determine just how “universal” the dynamic
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exponent of the 2D Ising model is in the concentration region in which dynamic effects
of the anomalous percolation behavior arise.

The disordered Ising model was specified as a system of spins §;=*1 with a
concentration p which are associated with N=pL- (L =400) sites of a square lattice. As
a result, we have p-2" possible configurations {S} with an energy

E==J2 pip;SiS;, (4)
ij
where the summation is over all the nearest pairs of spins, J is a measure of the interac-
tion energy of the spins, and p; are random variables described by the distribution func-
tion

P(p)y=pd(p,— )+ (1-p)8&(p,). (5)

These random variables characterize the frozen nonmagnetic impurity atoms (or vacan-
cies) which are distributed among lattice sites. We consider a ferromagnetic system with
J>0. We use the Metropolis algorithm, which consists of the random choice of a spin
S, and a flip of this spin with a probability

exp(—AESS'/kT)q AESS’>0’

W(S—S")= L AE 4 <0,

(6)
where W(S,S") is the probability for the transition of the system from a microscopic state
with a spin configuration {S} to a state with a configuration {S'}. This algorithm makes
it possible to realize the dynamics of an Ising model with a magnetization relaxation

N
m(t)=>, S;/N

to the equilibrium value determined by the temperature of the heat reservoir, T. One can
coordinate the tirae scale ¢ with the scale of {S} sequential configurations under the
assumption that N random choices of sites of the system are carried out in a unit time.
This time unit corresponds to the Monte Carlo step in terms of the spin. In the simulation
of the critical dynamics, the initial state of the system is chosen with all spins parallel
(m,=1) and with the temperature of the system equal to the critical value. The critical
temperature T, for disordered systems is a function of the impurity concentration, de-
creasing with increasing value of this concentration and vanishing at the threshold con-
centration ¢y, =1—p.. For a square lattice of Ising spins we would have p,=0.59,
and T,(p) would have the following values:*' T,.(1.0)=2.2692, T.(0.95)=2.0883,
T(09)=1.9004, T.(0.85)=1.7071, T (0.8)=1.5079, T.(0.75)=1.2921, and
T.(0.7)=1.0751, in units of J/k. To determine the dynamic exponent z in the present
study we used the Monte Carlo method along with the dynamic renormalization-group
method.** For this purpose we carried out a block partitioning of the system, in which a
block b“ of neighboring spins was replaced by a single spin with direction determined by
the direction of the majority of the spins in the block. The redefined system of spins
forms a new lattice with a magnetization m, . If, in the course of the relaxation, the
magnetization of the original lattice reaches a certain value m over a time ¢, and if the
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FIG. 1. Time evolution of the initial (m,) and renormalized (m,) magnetizations for the homogeneous Ising
model (the unit of time corresponds to the Monte Carlo step in terms of the spin). The dark line segments show
the intervals Am, corresponding to a power-law behavior of the critical relaxation, m, (1) (Ref. 23). The points
of these intervals were used along with (7) to determine mean values of z;, for various values of b with
b'=1.

redefined system reaches the same value (m,) over a time ¢, then the use of the two
systems after a block partitioning with block dimensions b and b’ and a determination of
the time intervals ¢, and ¢, , over which their magnetizations m, and m, reach the same
value m,, allow us to determine the dynamic exponent z from the relation

ty/ty:=(b/b")* or z=In(t,/ty)/In (b/b") (7)

in the limit of large b and b’ — . We have applied this algorithm to homogeneous and
impure systems with dimensions of 400° and with the spin concentrations specified
above. For systems with p=0.9 we carried out a procedure of simulating the relaxation
from 1000 Monte Carlo steps in terms of the spin with 10-15 passes with various
impurity configurations. The functional dependence m,(t) was averaged over these con-
figurations. For the systems with p=0.85, 0.8, 0.75, and 0.7 the procedure for simulating
the relaxation consisted of respectively 2000, 4000, 8000, and 16 000 Monte Carlo steps
per spin with 30 passes with various impurity configurations. The reason for this circum-
stance is that, as the percolation threshold is approached, the fluctuations in the distribu-
tion of impurities over the lattice grow, and this growth requires an increase in the
number of impurity configurations for the averaging of m,(t). The size of the system was
consistent with a partitioning into blocks with dimensions b=2, 4, 5, 8, 10, 16, 20, 25,
and 40. As an example, Fig. 1 shows curves of the behavior of the original and renor-
malized magnetizations m(t) versus the time for a homogeneous system. We used Egs.
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TABLE 1. Values of the dynamic exponent z,, found from (7), along with extrapolated values z,_ .. for a
system with dimensions of 400° with various spin concentrations p.

P
b 1.0 0.95 09 0.85 0.8 0.75 0.7
4 2.456
+0.068
5 2.454 2.439
+0.061 +0.053
8 2.401 2.394 2.433
+0.047 +0.048 +0.042
10 2.357 2.366 2417 2473
+0.036 +0.034 +0.034 +0.040
16 2.305 2334 2.389 2.469 2.565 2.805
+0.046 *0.026 +0.041 +0.028 +0.048 +0.051
20 2.285 2291 2.332 2.461 2.557 2.803 2.954
*0.031 +0.032 *0.031 *=0.016 *{).042 *0.056 +0.057
25 2.242 2252 2.269 2.385 2.547 2.788 2.942
+0.029 *0.023 +0.032 +0.029 +0.035 +0.054 +0.048
40 2.532 2.703 2912
+0.036 +0.035 *0.053
Zpox 2.24 2.24 2.24 2.38 2.51 2.66 2.88
*0.07 +0.06 *0.06 *0.05 *0.06 +0.07 *0.06

{7) to select values of the exponents z, corresponding to various values of b {Table I).
The trend found in the b dependence of z made it possible to carry out an extrapolation
to the case b—o under the assumption of a dependence z,=z,-.+constb™!. The
reader interested in the details of the procedure for simulating the critical dynamics of
disordered systems and for determining the exponent z is referred to Ref. 23. As a result,
we found the following values of z(p): z(1)=2.24x0.07, 2(0.95)=2.24%0.06,
2(0.9y=2.24>0.06, 2(0.85)=2.38%=0.05, z(0.8)=2.51*0.06, z(0.75)=2.66%0.07,
and z(0.7)=2.88% 0.06. The relatively large errors in z(1) and z(0.95) are consequences
of the broader sets of z, used to find the extrapolated exponent z,_. . The increases in
the error for z(p) with p=<0.8 are due to an increase in the fluctuations in the distribution
of impurities and a resulting increase in the number of impurity configurations involved
in the averaging.

Analysis of the values found for the exponent z(p) shows that at concentrations
p=0.9 the critical dynamics of the disordered 2D Ising model belongs to the same
universality class as the critical dynamics of a homogeneous model with an exponent
2=2.24%0.07. The value found for the exponent agrees well with the results of a field-
theory analysis® with z=2.277 and with the results of several other studies of the dy-
namics of a homogeneous 2D Ising model: z=2.22+0.13 (Ref. 24), 2.23 (Ref. 25), 2.22
(Ref. 15), and 2.24+0.04 (Ref. 26). On the other hand, there are some different results:
2=2.125+0.010 (Ref. 27), 2.14*0.02 (Ref. 28), and 2.13+0.03 (Ref. 29).
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For systems with spin concentrations p<0.85 we found that the dynamic exponent
z increases with decreasing p. These changes in z(p) can be interpreted as resulting from
crossover effects of the percolation behavior. We found that the p dependence of z for
p=0.7, 0.75, 0.8, and 0.85 can be described well by the logarithmic function

z=A'lIn(p—p.)|+B’ (8)

with A’ =0.56+0.07 and B'=1.62+0.07. The behavior in (8) can be compared with the
anomalous scaling in (3) for an effective dynamic exponent z with §r=¢,
= &(p—p.) "rand A" = Ay, and B' = B+Aln§, where v, is the exponent of the
percolation correlation length §,. The equality &7=§£, corresponds to the conditions of
the numerical simulation at T=T_.(p) and at p values close to p., since the use of
several known relations for the Ising model led to &r/&,=exp[2/v(T—T.)/kTT] as
p—p. and T—T.(p). Comparison with the results of a Monte Carlo study' of the
temperature dependence of the relaxation time 7 with p=p_ (A=0.62+0.12) and with
the results of a study'® of the concentration (p) dependence of this time at p<<p,
(A =0.48) shows that the value A =0.42*0.07 which we found for v,=4/3 agrees well
with the results of Ref. 19.

In summary, we have found confirmation of a singular dynamic scaling near the
percolation threshold, whose effects begin to be seen at spin concentrations p=<0.85 in
the case of the 2D Ising model. This phenomenon reflects a general property of the
dynamic behavior of impure systems in the long-wave limit. This dynamic behavior
differs from the static behavior in that the local conservation laws in the scattering of spin
fluctuations by impurities are different. As a result, the presence of impurities has a
stronger effect in the critical dynamics than in a description of the equilibrium properties
at the critical point.
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