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This letter examines nonlinear structures of a coherent state of Wannier—Mott
excitons created and sustained by optical pumping. The spectrum of
collective excitations and the stability of the structures are analyzed.

1. Equations describing a system consisting of coherent excitons and an electromag-
netic field were first derived in Ref. 1. A concentration bistability, which exists in a
coherent exciton condensate in a certain interval of pump intensities, was studied in Ref.
2. The properties of a uniform exciton condensate were described in detail in Refs. 3 and
4. Instabilities with respect to spatial stratification were studied in Refs. 5 and 6. Those
papers also examined the spectrum of linear excitations of a uniform coherent state of
Wannier—Mott excitons produced and sustained by optical pumping in a semiconductor
or a semiconducting system with quantum wells in situations with and without resona-
tors. Experiments carried out to probe an exciton condensate by means of picosecond
light pulses in quantum-well structures were described in Refs. 7 and 8.

In this letter we examine nonlinear structures of an exciton condensate. We examine
the spectrum of their collective excitations and the stability of the structures.

2, In the given field of a uniform monochromatic pump wave E =Eexp(iwt) we
use, in accordance with Refs. 1 and 2, the following equation for the wave function ®,
which describes the macroscopic quantum state of the excitons (recombination processes
are being taken into account):
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Here wy— w=A is the detuning of the pump frequency o from the frequency of the
exciton transition, wy; y is the reciprocal exciton lifetime; ¢ is the nonlinear interaction
coefficient of the excitons; m is the effective mass of an exciton; d is the dipole matrix
element for an exciton transition; £, is the amplitude of the pump field (® and E; are
normalized in such a way that [®|? and |E|? are the densities of coherent excitons and
photons in the pump wave, respectively); and £ is Planck’s constant. Equation (1) is valid
under the condition N r3<1 (r is the radius of an exciton, and N is the concentration of
excitons) over times scales 67>~ ' and over spatial scales 67> N~ . From the param-
eters in Eq. (1) we construct a length scale L= (%/my)". With m~0.1m (m is the
mass of a free electron) and with y~10° s™' we would have L,~10"* cm. It is
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legitimate to discuss nonuniform structures with a length scale L., under the condition
N~ Y<L .. For ry=0.5x10"° cm, this condition holds at N~10'7 em ™.

Let us assume that a thin film of a semiconductor of thickness /<<L,, is pumped by
a wave which is uniform in the plane of the film (the X,Y plane) and which is propagat-
ing along the normal (along the Z axis) to the surface of the film. We assume that the
distribution of excitons along the Z axis is uniform; we ignore absorption of the wave
over the thickness of the film. The nonlinearity coefficient can have either sign.'

Equation (1) is supplemented by the boundary conditions (for the 1D case)
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which correspond to boundaries (x=0 and x=1) that are impenetrable to excitons.

Steady-state homogeneous solutions @, of Eq. (1) are
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The equation for |®|* can have from one to three solutions, depending on the param-
eters. In the three-solution case, which prevails under the conditions A#>0 and
|A|>y\3/2, the quantity |®,|? is an S-shaped” function of |E|?, and the central state is
not realized. There are accordingly a concentration bistability and a corresponding hys-
teresis in the system.

Linearizing Eq. (1) near a steady, uniform, and otherwise arbitrary state, we find
a dispersion relation for fluctuations, which are assumed to be proportional to
exp(d¢+ikx):
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Under the conditions |8 ||®¢|*>v/2 and — A+26] &, |*>0, Eq. (4) describes™® an
instability [Re 2(k)>0] of a uniform coherent state of excitons with respect to periodic
spatial stratification with a length scale ~ L,. The stratification can be present in the
original uniform monostable and bistable cases.

3. We would like to point out that there can be simultaneous instabilities with respect
to stratification on the lower and upper branches of the S-shaped curve of |® |* versus
|E, |°. This situation prevails under the conditions # >0 and 1>A/y >\3/2.

Figure 1a shows a structure which grows after a small local perturbation of the
initial uniform state of the lower branch of the bistable curve. A similar perturbation of a
uniform state of the upper branch of the bistable curve, for the same parameter values,
leads to the structure shown in Fig. 1b. Under the conditions >0 and A/y>1, an
instability occurs on only the upper branch; under the conditions 6 <0 and A/y <—1, it
occurs on only the lower branch.

We wish to stress that in the system described by Eq. (1) there can also be some
aperiodic structures which are excited in a “hard” manner. In particular, there can be
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FIG. 1. Structures which grow from unstabie, uniform steady states corresponding to the two branches of the
bistable curve. The parameter values are L =24.7L ., A/y=0.9, and 2dE, /fi y=1.2807. In this figure and in
those that follow, |®,|* is expressed in units of y/(26). a—Lower branch, 8 |®, |°=1.005y/2; b—upper
branch, 8 |®,)>=1.524y/2.

solitary bunches of excitons which are nucleated by a perturbation of finite magnitude
under conditions such that the instability with respect to periodic stratification has not yet
been reached [Re (k)< 0}.

4. Some new collective excitations arise against the background of the periodic
structure. We denote by ®, a complex periodic solution of Eq. (1) with wave vector
k,: ®,=®(k,x). We seek a nearly periodic solution & =>[k,x+eF(X,T)] which
arises from a modulation of the structure by a collective excitation. Here X and T are
slow variables (X = ex,T= et). We introduce ¥ =P ,/d(k,x). By analogy with Ref. 9,
in which the instability of a periodic structure in a reaction—diffusion system was ana-
lyzed, we can then find an equation for the function F:

oF 3*F
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The asterisk means complex conjugation. Even without being more specific about ex-
pression (6), we conclude that the coefficient D is complex. The real part of this coeffi-
cient determines the damping, while the imaginary part determines the frequency of
long-wave collective excitations of the original, spatially periodic structure.

We have carried out a numerical study of the behavior of a periodic steady-state
structure which grows from an initial monostable state after a perturbation consisting of
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F1G. 2. Wave motion in a spatially periodic structure after local pulsed perturbations of various amplitudes. The
parameter values are L=12.0. A/y=—4, and 8|P|°=1.53y/2. a, b—Damped standing wave, with a time
interval y ! between a and b; ¢, d—undamped standing wave, with a time interval 2y~ ! between ¢ and d.

a local pulsed increase in intensity. If the initial perturbation is not too large, damped
wave motions propagate along the structure. The longest-lived of these wave motions is
one in which neighboring peaks oscillate out of phase (Fig. 2, a and b). We thus sec a
demonstration of the existence of “phonon” modes in a “crystalline” structure which has
grown. If the local pulsed excitation is large, an undamped standing envelope wave with
a period much longer than the period of the original structure is set up in the structure
(Fig. 2, ¢ and d).

S. An increase in the pump level and a change in the detuning may cause these
collective excitations to become unstable (the real part of D may go negative). A large
number of spatial harmonics are excited spontaneously and successively (in time), and
the system loses its symmetry. This effect ultimately leads to a random wave motion.
Figure 3 shows several times during the onset of the instability.

We note in conclusion that an equation like (1) also describes the field excited by a
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FIG. 3. Onset of an instability of a periodic structure. The parameter values are L =6.36L,,, 4/y=—5.75, and

6 |®,)2=3.08y/2. The time is expressed in units of 2y~ ".

uniform pump in a wide-aperture optical cavity resonator with a Kerr nonlinear medium
(in the approximation of a single longitudinal mode). An instability of the field with
respect to stratification in a resonator of this sort was analyzed in Ref. 10. The results
derived in the present letter also apply to that system.
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