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The conversion of a gravitational wave into an electromagnetic wave in a laser
beam is about 25 orders of magnitude more efficient than in a static

magnetic field. Two harmonics are generated: w)* w, . Conditions for detecting
these harmonics by ultrahigh-resolution laser spectroscopy are discussed.

The conversion of gravitational and electromagnetic waves into each other has been
studied by several authors.'~® It has been shown in particular that a gravitational wave in
a static magnetic field H, filling a volume of size L induces an electromagnetic wave
with an energy conversion coefficient®

a=GHL*/c*. (1)

Under the conditions prevailing in a laboratory on the earth we would have a~10"%.
This value is too low for an observation of the induced radiation. In this letter we show
that the conversion of gravitational radiation is much more efficient in a laser beam.

We start from Maxwell’s equations in vector form.” In the field of a weak gravita-
tional wave, these equations take a form analogous to that written in Ref. 5:
2 2

W—AE=FE’ W _AH=FH, (2)

where
A(hE) 4 curl(AH)

Fp=- 0T w0 +grad[div(f1E)],

P(hH)  d curl(hE) (3)

+
ax()l (?XO

Fy=— + grad[ div(hH)].

Here fz:(h «p) 18 the metric of the transverse traceless gravitational wave.

We assume that the laser beam is propagating along the x axis between mirrors 1
and 2, which are separated by a distance L. The gravitational radiation is propagating
along the direction n,:

n,=(sinfcosp, sinfsing, cosh). (4)
We seek a solution of Egs. (3) as the sum of a reference wave and an induced wave:
E=E0+E-), H=H()+ﬁ. (3

Here we are assuming that the reference wave and the gravitational waves are both plane
waves. In the frame of reference of the gravitational wave, the tensor 4 has two inde-
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pendent components: hgy = —hgyp=a, and hy,=hgy=b. The gravitational radiation of
all known astrophysical and man-made sources is very weak (h~10"1— 107%% and
low-frequency (w,/27~ 10® Hz). The ratio of the wave vectors of the gravitational and
reference waves is thus k, /ky~10" 12, We can calculate the induced radiation by carry-
ing out an expansion in the two small parameters 4 and k, /k,, ignoring the terms on the
order of A° and k ¢/ko in Fp and Fyy . As a result, for the case of a reference wave
propagating along the x axis and back, we find the following result for the vector Fy:

1
FEtz kZ k0E0+(h3g+h72){expl[ (1)0+ wg)t ko"l‘kg)l']

+expil (wg— w,)t— (kg— Kk )r]}+c.c. (6)
Here (hs3+ k)= —hy = — a(cos>d cos’@—sin’@)+b sin 2¢ cosf.

We seek the induced wave in the form

1
5 “(x)exp[i( wtFkx)]+c.c. 7

We assume that the amplitude A™(x) is a slowly varying function: k]A,|>|A,,|. Under
the matching conditions w=wy* w,, k=koxk,, we find the following equation for
determining A™ (x):

+

dA 1
—(ko*kg)——=k kE o (hs3+hyy)expl ik (17 sin @ cos )x]+cc.  (8)

Assuming that there have been N reflections from the mirrors with homogeneous initial
conditions, and taking into account the reflection conditions at the mir-ors, we find the
following equation for the wave amplitude:

ifsin Z* sinZ~
7+ +"_Zi—(h33+hzz), )

ko
A (0)=— k2 EoNLRV™ 2

where
Z* =k L(1%* sin 6 cos @).

A corresponding result can be found for the magnetic component of the induced field. As
a result, we find the energy flux of the induced harmonics wo* w,:

. A%L+B% 4
Wig=—g—— c=WoW,— (LN)ZRZN 1( f(e ®). (10)

Here W, and W, are the energy fluxes of the laser light and of the gravitational waves,
respectively, given by

2 2 3 2
_E01+H01 . _Cw 22
0 8ar ’ 887G "’

and f(#8, ) is the directional pattern. In the case a=b, this pattern is described by
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1
f(8,0)= 5(00320 cos’@—sin‘@—sin 2 ¢ cos 6)°.

According to (10), the energy conversion coefficient is
Wina G(Ej +Hp ) (L2N)? wo)z an

, ind
We

— N
a'=—= R?
W, !

For a laser power P=SW,=1 W, for a beam cross-sectional area S=mr’=m (r=1
cm), for L=3 km, for w27=6x10" Hz (A=500 nm), for R=0.9999, and for

N=Ny=1/(1—R), the conversion coefficient a has the value 2 107 '° because of the
large factor (wg/ wg)z. This value is 25 orders of magnitude greater than the conversion
coefficient in a static magnetic field. If the gravitational wave has an amplitude
a=10""", and if the measurement time is =1 s, the power of the induced radiation is a
fraction 81, /1=3.84X 10 '* of the power of the laser beam. This figure corresponds to
4,84 10° photons in each of the harmonics w,+ w, . These harmonics are seen as slight
peaks on the laser spectral line, at distances * v, from the center of the line. If the
lineshape is Lorentzian, the background &1, against which we observe the peaks, in the

band of the natural linewidth 5z, can be estimated from
S, 2 6v\?
2v, )

Here I is the intensity of the laser spectral line. Assuming that the peaks lying at a
distance v, = 10° Hz from the center of the line can be observed with adequate contrast,
which is specified by the condition

8, /1.=1, (13)

we find §~6 Hz from (12) and (13). According to Refs. 8 and 9, existing lasers can be
stabilized in a band ~ 1 ns. The requirements on the laser stabilization can be relaxed by
carrying out the observations at a low contrast and by using mirrors with an even larger
reflection coefficient. In contrast with the plans'® for a laser-interferometric detector of
gravitational radiation in the U.S., the arrangement we have been discussing here has a
single arm, and the mirrors are rigidly mounted.

I =

(12)
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