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A non-Markov process of the formation and rupture of hydrogen bonds leads to
stratification of a solution at high temperatures if the product of the energy

and lifetime of a hydrogen bond exceeds a certain threshold. This threshold is
calculated.

A fairly large number of solutions behave in the opposite way compared to their
usual behavior as their temperature T changes: The stratification into two phases, rich in
different components, occurs during heating rather than cooling (see, for example, Ref.
1). The T—x phase diagram of such solutions (x is the concentration of one component)
typically has a minimum stratification temperature T, (x;), at which concentration fluc-
tuations grow anomalously (there is a second-order phase transition with a lower critical
point). In certain solutions the stratification region is closed; i.c., there is also an upper
critical point Ty(xy)>T;(x;), above which the solution becomes uniformly mixed
again. There are grounds for believing that in both cases the solution has—in addition to
the region with a lower critical point—a low-temperature stratification region with an
upper critical point, which cannot be observed because it lies below the melting point.

Infrared absorption spectra clearly show that essentially all solutions which have a
lower critical point are comprized of molecules which form relatively strong intermo-
lecular bonds H...O, H...F, and H...N, and which form associations that survive for a finite
time. This point gives rise to difficulties in constructing a theory for solutions with a
lower critical point. The only success which has been achieved so far in this direction has
been to work from a phenomenological expansion of the Landau type for a thermody-
namic potential, i.e., to postulate the existence of a lower critical point.2 At the moment,
the difficulties in constructing a theory of associated solutions from first principles look
quite formidable (suffice it to say that constructing such a theory will require, in particu-
lar, solving a nontrivial percolation problem). It is therefore worthwhile to develop
intermediate-level models. We present one such model below.

We start from a virial expansion of the mixing free energy:'
F",:T[Nl lnN1+N3 In Nz_(N1+N2)ln(N1+N2)]
—(ul1N%+2u12N1N3+u33N§)/2(N1+N2), (1)

where N ; are the number of molecules of the two species, and u, ; are their interaction
energies. A variation of (1) describes a stratification curve with an upper critical point.
Assuming u; =uyp=u, up=v for simplicity, we find the binodal u,—u-
=dF, /ON,—dF, /ON,=0:
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0,=1-y%/3, 2)

where O=T7/T., T.=(u-v)/2, y=2x—1<1, and the concentration is
x=N,/(N,+N,). The relaxation equation corresponding to a variation of (1) near the
critical value of the concentration, x.=1/2, is

Y =(T=T)y—=Ty"/3, (3)
where y,~ 7T, is a generalized viscosity constant, and 7, is a diffusion time.

To take the effects of hydrogen bonds into account, we introduce a dichotomic
noise® in the energy (v) of the cross interaction (a typical example is an N..H bond
between molecules of water and pyridine compounds). For simplicity we assume that u is
a constant (a complete analysis will be the subject of a comprehensive paper). This
assumption means that we have v=v,+¢§, where vy is a long-range energy, and the
quantity § takes on the two values §=0 and é=v,,, where v, is the binding energy. The
average value is (€)= qu,,, where ¢ is the bond-formation probability (we assume that
this probability is independent of T, so that we can pursue our approximate analysis to
completion). We assume a correlation energy

(E()E(t— 1)) =g(1—q)v} exp(— 7/7,). (4)

Here 7, is the lifetime of the hydrogen bond (the time interval between spontaneous
ruptures of the bond). A stochastic equation corresponding to Egs. (3) and (4) is

Zyxyz(u—vf—ZT)y—2Ty3/3—§y. (5)

The stochastic process introduced here is very non-Markovian:® The corresponding
Fokker—Planck equation contains nonlinear operators of the exp(—d/dx) type.

We construct a complete time-dependent Fokker—Planck equation corresponding to
Eq. (5) on the basis of the theory of Ref. 3 [see Eq. (9.33) of that paper]. From the
steady-state limit (t—9; to save space, we omit the clear but lengthy expression for the
steady-state distribution function) we find a stratification curve: an equation which relates
the concentration y and the temperature O for an extremum of the steady-state distribu-
tion function. This equation contains as parameters q , €=v,/(4—vy), and v=71,/7,:

Y2 =[vO>—(1+2v—er)O+(1+v—qge—er)]/[O(1/34+2v—er—2v0)].  (6)

This equation, with separable variables, explicitly determines the square concentration
y? as a rational function of the temperature ® which can easily be tabulated. We therefore
construct the stratification curve ®(y) simply for the function which is the inverse of
y2(®) from (6).

Under the conditions ¥<<1 and g<¢1 (a transition to a regular problem: a short-lived
weak bond), we find Eq. (2) from (6). Here we have a realization of a stratification region
with an upper critical point (Fig. 1). The nature of the phase diagram changes in a
qualitative way at a threshold value of the parameter e€v: At

ev=1-2qg—2(1-9g+94¢*) "3, (7)

a lower critical point arises, and the stratification region becomes closed. We wish to
repeat that the rupture and formation of bonds constitute a non-Markovian process: A
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FIG. 1. Transition to stratification with a
lower critical point as the parameter
evincreases. The stratification curves in the
25F insets arc plotted for g=0.1 and either
6 e=0.5 (1) or 1.43 (2). Curve (7) (g=0.1)
separates characteristic regions of (e, v).
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calculation with a white noise analogous to that carried out above with a dichotomic
noise leads to an ordinary diagram with an upper critical point for all values of the
parameters of the white noise.

Estimate (7) shows that the effect of the mechanism described here for a “floating™
of the stratification region on the 7T—x diagram is completely realistic for known asso-
ciation solutions, for which typical values of the hydrogen-bond energy v, are 8—40
kJ/mole (ranging from the relatively weak H...N bond to the strongest bond, H...F) (Ref.
4). The diffusion time for a solution is on the order of Tx~a3/D , where a~3 A is the
average distance between molecules, and D~ 10~° cm?/s is the diffusion coefficient. In
other words, we have 7,~10'" s. This figure is one or two orders of magnitude longer
than the bond lifetime, which is comparable to the time scale for dielectric relaxation.
The parameter ev is therefore greater than one in nearly all association solutions, which
accounts for a lower critical point.
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