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Equations of motion incorporating an anharmonicity of the interatomic
interaction are derived for the Frenkel’—Kontorova model. Corrections to existing
solutions in the harmonic approximation are also derived. A limit is found

on the velocity of an extension soliton, corresponding to an energy of the soliton
which is still finite. New solutions due to the anharmonicity are found. One

is a soliton with a topological charge of 2.

Frenkel’ and Kontorova! have proposed an extremely simple 1D model of a chain in
a periodic potential to describe the structure of dislocations. Later generalizations of this
model to various periodic potentials, e.g., the ¢* potential,” have been used to study
structural phase transitions caused in ferroelectric materials by displacements of atoms
from their equilibrium positions. These generalizations have also been used in discus-
sions of the mobility of protons in chains of hydrogen bonds in certain macromolecules,
biological membranes, and ice (as well as in other applications). Research on chains of
hydrogen bonds is benefiting from the use of the ¢* potential and the double periodic
harmonic potential.> The problem reduces® to one of solving the double sine-Gordon
equation with a minus sign.’ The model becomes more similar to the original Frenkel’ -
Kontorova model which incorporates the features of the ¢* model.

Pnevmatikos et al.” justified the standard assumption that the interatomic interaction
is linear for a model of this type®’ on the basis that no analytic expressions are available
for the solutions of the Frenkel’—Kontorova model with an anharmonic binding of near-
est neighbors, other than some partial solutions® for a special type of quaternary anhar-
monicity and solutions with fixed parameters for the case of a cubic anharmonicity. A
numerical study,” in which the parameters of a solution of the latter type were varied,
demonstrated that this solution is not sufficient for studying an anharmonic chain in this
model. Studies®* of small anharmonic corrections to known solutions of the Frenkel’—
Kontorova model have also failed to yield new types of solutions.

The assumption that the interatomic interaction is anharmonic is considerably more
realistic. An inflection point in the anharmonic interatomic potential of the chain gives
rise to new solutions in the model.!"'? In the present letter we derive corrections and also
new solutions in this model which are consequences of the anharmonicity of the chain.

The Frenkel’—Kontorova model deals with a 1D chain consisting of spring-coupled
particles of mass m in a periodic potential g with a period 4. We find travelling-wave
solutions with a coordinate (x—uv 1), where x is a Lagrange coordinate, v is the wave
velocity, and 7 is the time. The Hamiltonian H of such a system in the continuum
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approximation, normalized to the product of the stiffness coefficient f of the interatomic
bond in the chain and the square of the chain period A, is

H=f:c[V(y’(n))2/2+g()’(n))+u(r(n))]dn, )

where v=v?/c?, c*=h*f/m is the square of the sound velocity in the chain, y(#n) is the
displacement of the nth atom of the chain from the nth minimum of the periodic potential
well g(y), divided by #, and r(n) is the deformation of the nth bond. The external
harmonic ~ potential g(y) can be chosen in the standard form'®
g(y)=a[1—cos(2my))/2m, where a is the dimensionless amplitude of the potential. The
prime means the derivative with respect to the variable n, which is continuous in the
continuum limit. We choose the interatomic potential in the chain to be

u(ry=r*2—yr’/3, (2)
where vy is a dimensionless anharmonicity constant.

From Hamiltonian (1) we find the equation of motion,

By"'=dg(y)/dy+2vyy'y", (3)

where S=1—v. This equation has three branches of solutions:

1—/3 sin(s)—cos(s), 3ky'<0, (4a)
3ky'=1{ 1+ 3 sin(s)—cos(s), 0<3ky'<2, (4b)
142 cos(s), 3ky'>2, (4c)

where s =arccos(1 —¢q)/3, k=4vy/(38), g=81k*E+g(y)]/(4y), and E is an integra-
tion constant. At values of the argument |1 —q|>1, Egs. (4a) and (4¢) should be under-
stood in the sense of an analytic continuation of the function arccos(l —¢q), where these
formulas are applicable and have the form of the Cardan formula. The third branch of
solutions, (4¢), is due to the anharmonicity of the interatomic interaction. It corresponds
to supercritical deformations, which have not previously been studied analytically. The
new types of solutions derived below stem from the existence of this branch.

FIG. 1. Phase trajectories for the case €>0. 1—FE
=0, 2—E=ae/m, 3—0<FE<lae/, extension;
4—q/m<E<0.5; 5—0<E<x, contraction;
6—x<E<ae/m, supercritical extension;
T—ae/m<E<B/24.
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FIG. 2. Phase trajectories for the case e=0. 1,23—
E=ae/m=0, separatices; 4— —a/7m<E<0.5; 5—0
<E<x%, contraction; 6— —x<E<0, supercritical
extension; 7T—0<E< %24,

Let us consider the waves with »<C1. The phase portrait of the model described by
Eqgs. (1) takes different forms, depending on the sign of the parameter

e=7wB124y*a—1 (5)

(see Figs. 1-3 for e>0, e=0, and €<0, respectively). The different types of phase
trajectories are separated by separatrices (the heavy curves in Figs. 1-3) which corre-
spond to two values of the integration constant, E=0 (curve 1 in Figs. 1 and 3) and
E=ae/m (curve 2 in Figs. 1 and 3). In the case €=0, all the separatrices correspond to
a common value of the integration constant, E=ae/7=0, and they merge (curves 1-3 in
Fig. 2).

The anharmonicity influences the solutions which have been found previously (1
and 3 in Fig. 1; 4 and 5 in Figs. 1-3) in the Frenkel’—Kontorova model."*” Under the
condition 3ky’ <1 we find from (4)

y'=*[2(E+g)/B]"*+3k*E+g)/4y, (6)

where the plus sign corresponds to an extension, and the minus sign to a contraction.
Incorporating the first term gives us the wave profile in the Frenkel’~Kontorova model.
The second term, which is the anharmonic correction, is proportional to the constant y.
The sign of this correction depends on whether we are dealing with subsonic waves
(v<(1) or supersonic ones (¥>1). It follows from (6) that for subsonic waves (including

FIG. 3. Phase trajectories for the case e<0.
1—E=0; 2—E=ae/m; 3—ae/m<E<0; 4—
—a/mT<E<ae/m;, 5—0<E<x, contraction, 6—
—x<E<a¢/m, supercritical extension;
T—0<E<B/244%
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standing waves) the regions of extension of the chain (with y'>0) are shortened by the
anharmonicity. The regions of contraction (v’ <)) become longer. The anharmonicity
has the opposite effects for supersonic waves.

The physical meaning of the anharmonic corrections can be outlined as follows. If a
defect involving the disappearance of one atom arises in a commensurate system, the
anharmonic chain, becoming softer in the extended state, reaches a match with the sub-
strate over a shorter length of the chain than in the case of a harmonic chain. If an atom
is instead added to an anharmonic chain, which becomes stiffer in the course of contrac-
tion, the contraction spans a section of the chain wider than in the harmonic case. The
size of the region of contraction or extension is characterized by the width of the corre-
sponding kink or topological soliton of the given model.

In the case E=ae/m>0, the phase trajectories of sub- and supercritical extension at
the points y==*1/2,%£3/2..., 3ky'=2 connect, forming separatrices 2, which consist of
solutions (4b) and (4¢). These trajectories are distinguished by the circumstance that their
period is twice that of the period of an unclosed phase trajectory for the Frenkel'—
Kontorova model (curve 3 in Fig. 1). In the case e—0, separatrices 2 and 1 in Fig. 1
merge and form separatrices 1-3 in Fig. 2. In the case 3ky’ >0 these separatrices de-
scribe a kink with a topological charge (i.e., the total displacement y along the length of
the chain) of 2 (separatrices 2 from y=—1 to y=1 in Fig. 2). In the case
E=ae/m=0, the velocity of the extension soliton described by the separatrix in Fig. 2 is
at its maximum value,

vo=c[1—(24a~?/m)"3]'>, (7)

In the case E=ae/m>0 (Fig. 1) each separatrix 2 describes a lattice of solitons with a
velocity v<<v,.. For example, if we are dealing with a soliton mechanism for the trans-
port of protons in a chain of hydrogen bonds,* we must bear in mind that the transport
velocity is limited to the value v, at which the soliton energy is still finite, as was known
previously. In the model of Ref. 4, idealized to the case of defects of only a single type,
the magnitude of the electric charge that can be transported can double in accordance
with the topological charge of 2.

In a description of a soliton in a system with critical parameter values (e=0; Fig. 2),
Eqs. (4) for the separatrices simplify:

3ky'=1+2 cos[2m(y+j)/3], j=+1,0,—1. (8)
Equations (8) describe separatrices 1-3, respectively, in Fig. 2. From them we find an

expression for the profile of the corresponding critical extension kink with a topological
charge of 2:

y=(3/7r)arctan| \5 tanh(nw/2L)]. (9)

In the case 3ky ' <0, separatrices 1-3 in Fig. 2 describe a contraction antikink, for which
the given velocity is not critical:

y=(3/m)arctan[ (2 exp(n/L)+1)/y3], (10)
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where the quantity L(B.7/2a)"?=(\3ym/a)"? is formally equal to the width of the
soliton in the Frenkel’—-Kontorova model' with the critical parameter
Bc=B(v.)=(24ay*/m)'".

In the case e<(, separatrix 2 separates closed continuous trajectory 4(—a/m<E
< ae€e/) and unclosed continuous trajectory 6 (—*<E<ae/m) from trajectories 1, 3,
and 7, with a discontinuity at the critical point (3ky’=2). Separatrix 2 corresponds to a
travelling wave in which the displacement of the extension grows in the course of an
alternation of contraction and extension.

There can be no cyclic motion along trajectories 7 (Figs. 1 and 2) or 1, 3, and 7 (Fig.
3) (the permissible direction of the motion is specified by the arrows on the phase
trajectories), and in the continuum approximation there is no configuration of the chain
which corresponds to such a motion.

The results of this study can be summarized as follows. First, a limit is imposed on
the velocity of an extension soliton by the velocity at which the energy of the soliton is
still finite (as was assumed previously). This point is of importance for (among other
things) explaining the mobility of ions in the case of a proton conductivity. Second,
among new solutions stemming from an anharmonicity we have found a soliton with a
topological charge of 2. This solution, not previously known, is a 47 pulse not for the
double sine-Gordon equation® but for the ordinary Frenkel’—Kontorova model with an
anharmonic chain. Consequently, both the choice of substrate potential in the given
model** and the interatomic anharmonicity may give rise to new types of solutions.
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