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The ohmic and Hall flux flow conductivities are calculated at low temperatures
for a general electronic spectrum in the normal state. The sign of the Hall
effect is predicted to depend on the shape of the Fermi surface.

1. Introduction

The electric field in the mixed state is associated with a flux flow, E=[BXu] /c. If
the vortex velocity u is directed not at right angles to the transport supercurrent, a Hall
voltage appears, in addition to the dissipative component. The Hall effect shows a very
unusual behavior: In some cases its sign reverses as a result of the transition from the
normal state to the superconducting state. There are reasons to believe that this behavior
is peculiar to the flux motion in type-II superconductors (see Ref. 1 and the references
cited there). This assumption is corroborated by the fact that the sign reversal was ob-
served for ordinary V and Nb superconductors.*

The quasiclassical kinetic equations® for clean superconductors, />¢, which can
describe the Hall effect in the mixed state, were recently derived. Interest in clean super-
conductors is based on the recent experiments in the superclean regime,>® where a large
Hall angle and a high vortex viscosity at low temperatures were observed.

In the present paper we use the new kinetic equations to calculate the ohmic and
Hall flux flow conductivities at low temperatures, A%/E<T<T,, employing the same
physical ideas as those in Refs. 7-9. Being interested in the intrinsic aspects of the flux
flow, we ignore the pinning effects and assume a free flow of vortices. We consider a
general electronic spectrum and investigate the sign of the Hall effect, depending on the
shape of the Fermi surface of the normal metal. The only assumption on the Fermi
surface is that it is isotropic in the crystal (ab) plane, which is relevant to the high-T.
materials with a uniaxial anisotropy. We assume the most symmetric alignment of the
magnetic field along the ¢ axis with the current flowing in the (ab) plane. We consider
isolated vortices in the limit of low fields H<<H ,.

2. Kinetic equations

The vortex velocity u and the average electric field are determined by the relaxation
of perturbations produced by the moving vortices. One of the kinetic equations for clean
superconductors derived in Ref. 4 is
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The nonequilibrium corrections to the distribution functions f, and f, are, respectively,
odd and even in € and p. The operators aldt= dt*+2ieo and V=V+(2ie/c)A, when they
act on A (upper sign) or on A* (lower sign). The collision integral is
J =T Y+ f, ) for simplicity, we assume an isotropic scattering by impurities,
which is characterized by the mean free time 7. We set g =1(g%+g%), etc., where gRY)
are the regular retarded (advanced) quasiclassical Green’s functions.

The new kinetic equations differ from the usual quasiclassical equations'” in the

terms with Jf/op multiplied by “forces” that include the Lorentz force (e/c¢)[ve XH] and
the forces due to the spatial variations of the order parameter. The force terms are
generalizations of the result of Ref. 11, which was derived for slow spatial variations of
the order parameter.

Equation (1) can be solved if the regular functions are given. For low temperatures,
T<A.,, we can use the solution obtained in Ref. 12. Here we used that result. We choose
the coordinate z axis along the magnetic field and assume that the vortex has a positive
circulation around the z axis, which corresponds to the positive charge of the carriers. Let
v, be the projection of the quasiparticle velocity v onto the (x,y) plane. The vector v,
makes an angle a with the x axis. If p and ¢ are the distance and the azimuthal angle in
the cylindrical frame, then the impact parameter of a quasiparticle moving with v,
through the point (p.¢) will be b=p sin(¢—a). The distance along the trajectory is
I=pcos(¢ -a), so that p>=b*+1°. In the leading approximation in € /A, we have

8- =300, Pl K(p)] e eb)], @
and
—ip_ _ pt Lid_ 7TU —Kip)
f e fle 3¢ )cos(cj) a)e ole—e(b)]. 3)
Here
2 %
K(p):Z :Aodp’, C(lu)=J0 expl —K(p)]dp. (4)

The bound state energy is'?

= Ag(p)
(h)=bC ' (w,) | 20 expl - Kp1dp s

The impact parameter b= —n/p, , where n is the angular momentum of quasiparticles,
and p, is the momentum projection onto the (xy) plane. Therefore, the distance between
the energy levels with angular momenta n and n*1 is wy,=(1/p N Je/db).
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Using the second kinetic equation (omitted for brevity), we can show that the func-
tion f, is constant on the quasiparticle trajectory.!* Integrating Eq. (1) along the trajec-
tory, we obtain

IfY ge(b af1].
([v, xXu]2) j;e ;(b)TrS[e—e(b)]+ leﬁ}z)
b w
ajb) 7r8[e—e(b)]+fﬁxJ(1”dl=O. (6)
The collision integral is
o _ 1 1 + 1 +)
Ji=—7 f1<87>g7+§<f1f~>ff+§<f1f—>ff , (7
where
1 dSg
<g>— V(O) (277)3UF g(pF ,l’). (8)

The integration is carried out over the Fermi surface, and 1{0) is the average density of
states.

Equation (6) can be solved only after certain simplifications of the collision integral.
In Refs. 7 and 14, the model proposed in Ref. 12 was used. According to this model, the
vortex core shrinks at low temperatures to §7T/A... As a result, the dependence of e(b) on
v, reduces to a simple form, and one can calculate the averages in the collision integral
for a spherical Fermi surface. However, this model is an oversimplification of the real
order parameter behavior. Furthermore, it does not help much if the Fermi surface is not
spherical.

To avoid integrals of unknown functions, we use here another approximation which
is equivalent to a renormalization of 7: Instead of the last two equal terms in the true
collision integral [Eq. (7)], we use the first term twice. In the moderately clean regime,
both models give the same ohmic conductivity. We now have

g, UL In(A./T) v, 3
J'im‘ll dl— TC(UL) C(UF)(aE/ﬂb) 6[6 G(b)]f] (9)

The logarithmic divergence in the integral for small p is cut off at distances
p~b~&(T/A.).

For the Fermi surface isotropic in the (xy) plane we have

L0

viX—2)=_p a
1

py
Here the plus sign is for quasielectrons and the minus sign is for quasiholes, since the
directions of v, and p, are either the same or opposite for these two types of quasipar-
ticles, respectively.

(10)

The kinetic equation (6) gives
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The “effective scattering time™ is 7,=718(v ), where

(v,)= clo.)
Blvi)= (A, /T)(v, [Clv, )(de/ab)] Ty

is on the order of unity (aside from being a possible logarithm).

The transport current can be calculated using the general scheme described, for
example, in Ref. 10. Using the distribution function of Eq. (11), we have

. ds )
Jn:C’j m%[)d%i“*‘ YolzXu]). (14)

Since u=c[EXZz)/B, the flux flow conductivities are

o= 2lel. f S(p~)|y()|dp,.+j S(pv)l)’o!d.ﬂv} =, (15)
(277)’ q.e. - N q.h. - ; B

(T'fH): > 3 [J S(p2)|YH|dP1_f S(p:)|')/lltdp: i (16)
(277') q.c. q.h. B

The modulus of the charge appears in Eq. (15), since the circulation of the vortex was
chosen along the positive z axis (along the magnetic field) for the positive charge of the
carriers. In the opposite case, both 7y, and de/@b change their signs, together with the
vortex circulation. Equations (15) and (16) are generalizations of the result of Ref. 7 to
the case of a nonparabolic spectrum of quasiparticles.

3. Discussion

In the superclean limit /> &F /A, or w,7>1 the Hall coefficient is |y,|=1, and the
dissipative part 7y, vanishes as (w,7.) '. The Hall angle, which is defined by
tan ;= (T}-”)/(T(f“)’\'w(,T, is equal to 7/2. The Hall conductivity is (f}-'”:(N(,—N,,)eC/B,
just as for the normal metal in high magnetic fields. The transport current is
Ju=(N,—N,)eu, where N=2V/(27)*, and V, and V, are the volumes of the electron-like
and hole-like parts of the Fermi surface, respectively.

The electron-phonon relaxation can also play a role if the impurity content is low
enough. This mechanism can become more effective in the superclean regime, since for
high-T . superconductors the electron—phonon relaxation is substantial. It is possible that
the increase in the Hall angle toward the superclean limit observed in Ref. 6 is due to the

increase in 7,, with decreasing temperature.
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In the moderately clean case we have y,=w,7.4<<1. In the model of Ref. 12 for the
vortex core structure, the ohmic conductivity is o} = 1(0)le|- 7A% In(A,/T)c/B, and it
reproduces the results of Refs. 7 and 14.

In the limit wym<1 we have |yy|=(wy7.4)>. The Hall angle is small 6;,~w,7. The
sign of the flux flow Hall conductivity [Eq. (16)] can be compared with the normal-state
Hall conductivity in low fields, @, 7<1. For the model with an isotropic scattering by
impurities we have'

He’ 7
(H) _ 2 _ 2
A= Gy | [, pian [ viar. | )

We see that the signs of the Hall conductivities in the normal and the mixed supercon-
ducting states may be different, since the functions under the integrals in Egs. (16) and
(17) have different momentum dependences. Therefore, the sign of the Hall effect can
change after the transition from the normal to the superconducting state. The sign reversal
depends on the shape of the Fermi surface; it is absent for a simple parabolic spectrum,
€,= pz/ 2m*, when the flux flow and the normal-state Hall conductivities have the same
sign.” This conclusion differs from the models of Refs. 16 and 17 which predict a
mixed-state Hall effect of the same sign as that in the normal state. The latter theories
assume the quasiparticles in the vortex core to be the same as in the normal state.
However, the localized quasiparticles have a different energy spectrum and their behavior
therefore differs from that in the normal state.

The sign of the Hall conductivity of clean superconductors at low temperatures can
be compared with the results of Refs. 18 and 19 for gapless superconductors in the dirty
limit /<€§,;. For the latter case the sign of the Hall effect depends on the average energy
derivative of the density of states at the Fermi surface which, in principle, may be
different from that in Eqs. (16) or (17). Therefore, the sign reversal depends on the purity
of the sample and on the shape of the Fermi surface. The transition between presence or
absence of the sign reversal for the same doping level occurs in the range //§~1.

In summary, we found that (1) in the superclean limit, /> £F /A, the Hall conduc-
tivity at low temperatures is the same as that for high fields in the normal state. (2) In the
moderately clean case, £<€/<<&E /A, the sign of the Hall effect in the mixed state at low
temperatures may differ from that in the normal state, depending on the particular struc-
ture of the Fermi surface. (3) The sign of a clean superconductor may differ from that of
a dirty compound in the gapless regime. This result indicates that the sign reversal may
depend on the impurity content in the region /~£. The sign reversal is therefore very
sensitive to the Fermi surface structure, to the doping level, and to the impurity
content."%
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