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Some new, asymptotically exactly solvable models of random walks and
oscillations in disordered systems are proposed. “Asymptotically” here means
after a long time. Some of the new models are multidimensional. One-
dimensional random walks with a nontrivial unit cell and 2D oscillations in a
simple 2D lattice are examined in detail. A general method for
constructing models of this sort is formulated. © 1994 American Institute of
Physics.

1. The theory of a random walk in a disordered medium is of general physical
importance, because of its widespread applications in various fields of natural science and
also because of its profound relationships with general problems in statistical physics and
field theory (see, for example, some recent papers]“g and the literature cited there). The
central problem in this theory is to construct ny(t)=(1~’xy(t)), a solution of the kinetic
equation

AP, (1)dt= =2 [Wy P () =W P ()], Pey(0)=08,y, 1)

z

averaged over a random distribution of transition rates w,,. Here ny(t) is the condi-
tional probability for observing an excitation at time ¢ at lattice site x if this excitation
was at y at time +=0.

Among the major accomplishments of this theory we can cite progress in research
on the long-term asymptotic behavior of 1D systems which has been carried out since the
pioneering studies.”!® Exact results on multidimensional problems are much fewer in
number, and the only reliable calculations of diffusion coefficients for systems with rate
fluctuations w,, which are not small are for the model of isotropic random hops'! (the
random-trap model) and modifications thereof.5® Preasymptotic processes have also been
analyzed in that model.®

The theory of oscillations in disordered media is close in many ways to the theory of
a random walk in a disordered medium in cases in which the observables are the asymp-
totic behavior at long times, the asymptotic behavior at low propagator frequencies, or
the low-energy behavior of the density of states."!> Here the problem with random
masses is an analog of the model of isotropic random hops. Asymptotically exactly
solvable multidimensional models of oscillations in disordered media with random forces
have apparently not been taken up previously in the literature.
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In this letter we propose some new, asymptotically exactly solvable models. In the
1D case, these models are significantly richer than the existing models"*3%!! in terms of
the structure of the elementary transitions. In the multidimensional case we propose, for
the first time, an asymptotically exactly solvable model of vector oscillations with ran-
dom force matrices. An important point is that these new models are consistent with
natural symmetry properties in the distribution of the parameters of the medium.

2. Let us consider symmetric random walks on the line of integers Z, partitioned into
cells of length N. We denote by n the cell number, and by » the number of the site in the
cell. The nonvanishing w,,=w,, are Wy, ,— 1nn+ =&, V=1-N, Wy, ynn=§,. In-
troducing Py (£)=Pup s 4 n+ (1), we find

dPldt=—~BECP, B(t=0)=5,,6m,
B“V:(é,uu-a,um#]V)5mn+a,uNavl(&mn—am+l,n): C=B+’ (2)
mn mn(gm) 6mn§ZV mn(§m ;.Lu+ gm)a

where 6,y ,=3,,. We are assuming that the random matrices ém have identical dis-
tributions which are 1ndependent of m, and we are assuming that there exists a reciprocal
moment {(£,)) %), where J > 1. Applying the technique of Ref. 8, which is completely
legitimate for matrix-valued §,,,, we find an expansion of the Laplace transform of the
propagator, P(\)= [ “dtP(t)exp(—\i):
P(AM)=(A+B&£C) '=A"[1-B&A+CBE)'C],
J

EN+CBE)'=(\E+CB) 1= (GAn)G+(GAp)Y T (N E+CB)TY,  (3)
j=1

G=(N/k+CB)™', p=«x"'=¢7!, k7 l=(&N).

Taking the sum of (3) term by term, and expanding each term in an asymptotic series at
small values of A, we find the expansion of the average propagator which we need. In the
leading order as A—0, Re(A)>0, we have

(POV)=(\+BkC)™", 4)
which involves a diffusive asymptotics at large ¢ (Ref. 8).

3. Yet another simple and interesting 1D model can be found by the same approach,
based on Eq. (2), by setting B=1-T, where (Tf),=f,+;, and by assuming
b= Ounél” . The random matrices &% "are limited only by the conditions that the tran-
sition rates w,, be nonnegative, that the first 2J reciprocal moments exist, and that the
distributions of £,, in the different cells be translationally invariant and independent. In
this case we find a richer system of relationships, in which all transitions within a group

formed by a unit cell and the first site of thel nearest cell on the right are allowed.

4. The third system describes 2D oscillations in a disordered medium. We assume
that “molecules” of unit mass are at the sites x=(x,x,) of a Z* lattice with an even sum
of coordinates x;+x,, and we assume that each of them interacts with the two nearest
coordination spheres from the same sublattice, in such a way that the displacements u
satisfy the equations
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dPuldt*=—® DT, u(t=0)=v, du(t=0)/dt=w,

(]l 2 1n__ 1 2 2n _ 1 2 2
u,=(u,,uy), ®7=a,V,,—0ob,Vy,, O5=bV, +0a,V;, o°=1, (5)

V£y= x+ej,y——6x—ej Wy el=(170)5 ez=(071)’ (g)xyzgxaxy'

Here m, n=1-2; a and b are real vectors; and the £, are positive-definite, real, symmet-
ric 2 X 2 matrices which are distributed identically and which are independent at different
values of x. These matrices are defined at the sites with an odd sum of coordinates
X1 +x,. The force matrix Q7= (® &P *)"" links each site x with the eight nearest sites
of the same sublattice. Momentum is conserved: Z,£)7,'=0. In leading order in the
number (N — ) of sites in the sublattice, and for an interaction of each site with the same
nearest neighbors, the symmetric matrix €} can have 17N independent elements. In our
model, there are 3N such elements: the number of quantities £7" .

It is easy to verify that the distribution ®¢® ™ is invariant under translations and
rotations through 7/2 of the plane of the lattice:

x—sx, u—su (se;=e,, se,=—eq). (6)

If the distributions &, and s&,s* are instead identical, then with o=1, a;=a,, and
b, = — b, the distribution ®£® " is invariant under reflections at the axes (in this case we
have ab=0).

If averages ((£,) %), J>1, exist, the asymptotic form of average solution (5) is
constructed by the same scheme as for (2), with \ replaced by A?, B by ®, and C by
@™, and with initial conditions of a different form.

If the distribution £ is invariant under (6), then (£, 1) = 1/x is a scalar matrix, and in
leading order as A—0, ReA>0 we have

(u(\)Y=(N>—kH) Y(v+Aw), H=H,+H,,

H"=b2A6,,+(a*—bH)V"V"e™ ", A=(V')2+(V?)?,

H"=ab{(1- 8, )[(V')*—(V?)*]+20V'V?5,,(-1)"}.
The operator H, is invariant under rotations (6), and H, is also invariant under reflec-
tions. In the continuum limit (replacing V* by d/9x;), with =1 and ab =0, the operator
H is O(2,R)-invariant. In the low-frequency asymptotic limit, the spectrum has longitu-
dinal and transverse acoustic branches [w,=c k(1 —i({.k)?), a=1,t]. The decay is

governed entirely by the following term [proportional to (nA*(A?/k+®*®) "1 5)]in the
expansion of the effective force matrix H in fluctuations 7=x"!— ¢! [see Eq. (3)].

5. Systems (2) and (5) are examples from a very large class of asymptotically
exactly solvable models, which take the following form in the case of a random walk in
a disordered system:

dP!ldt=—(BE'F . FM-1gMC Py~

Here 1) n € Z¢ is the “number” of the cell, and uis the number of the site in the cell;
2) the operators CB, F Y., FM71 are invariant under displacements along n; 3)

(F™)™)2% =0 for |n—n'|>R,, m=1-M—1; 4) for ReA>0 the operator
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G=(A+CB)"! is I, -bounded, and we have NG." =0(1) if A\—0 and Rex>0; 5)
(f’"): : =(EME* 8, , m=1-M, where (§"')ﬁ,""are distributed invariantly with respect

to the same displacements, and (£”)%* and (.f""):'; are independent for [n~n'|>R,; 6)
the averages ((£'F'€2..£M)™"), n=1-2J, where J is quite large, are finite; 7) the

transition rates are nonnegative; and 8) =, “(B§1F 1g2 FM-1gMc )::' =0. In other
words, the total probability is conserved. A randomness of the initial parameters is per-
missible. Here, nearly as in (3), an expansion in fluctuations of the operators
N(EVFTE2..£M) 71 serves the purpose (a proof of the asymptotic convergence is basically
the same as in Ref. 8).

In a similar way, we construct oscillation models in which a nontrivial unit cell is
also permissible, and instead of 7) and 8) we require that the force matrix be symmetric,
and that momentum be conserved.
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