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The quantum interference correction to the conductivity is calculated for 2D
electrons in a cubic A;B; crystal with spin—orbit splitting by solving appropriate
cooperon equation. The spin dependent vector-potential due to spin—orbit
coupling leads to considerable changes compared to Larkin-Hikami-Nagaoka
expression. © 1994 American Institute of Physics.

Weak localization corrections to the conductivity of 2D structures in a magnetic field
were obtained by Hikami et al.' in their pioneering work. Only the spin—orbit skew
scattering mechanism (Elliot—Jaffet mechanism) of electron spin relaxation was consid-
ered as the origin of the spin—orbit effect on the conductivity. In subsequent studies of the
weak localization the spin—orbit effects for 2D conductors without an inversion center
were treated exclusively in terms of the Dyakonov—Perel spin relaxation time, in close
analogy with the skew scattering effect (see, e.g., Refs. 2 and 3). Recently,*™S it was
demonstrated that the spin—orbit interaction effect on the weak localization and universal
conductance fluctuations should be considered as an effect of the spin-dependent vector
potential, and important terms connected with this vector potential were shown to exist in
the cooperon equation. Such an approach considerably changes the results'? for spin—
orbit coupling. In the present paper we study the anomalous magnetoresistance. Its ex-
perimental investigation is the most convenient tool for the examination of the weak
localization effects,”® and the improvement of theoretical formulas is important for the
determination of various relaxation times and the spin—orbit splitting. For this purpose
we solve here exactly the cooperon equation which is obtained by direct use of the
Green’s functions which explicitly include the spin—orbit terms in the Hamiltonian.

We consider here the quantum wells with the normal to the 2D plane in the (001)
direction of the A;Bs cubic crystal. In that case the Hamiltonian for 2D electrons has the
form (we assume A=1)

k? -

H= 2_m + of). (1)
Here o; are the Pauli matrices and Q,=-Q; cos ¢—{1;cos 3¢,
Q,=Q, sin g—Qysin 3¢, Q= yk[kf—(k2/4)], Q;= y(k3/4), tan =(k,/k,), and
k*=k:+k,. Here k}=J|ay/dz|*dz is the mean square of the electron momentum in the
direction perpendicular to the 2D plane, ¢ is the electron wave function, k, and k,, are the
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FIG. 1. Graphic representation of the cooperon equation.

components of the in-plane electron momentum, and 7 is the spin—orbit coupling con-
stant. We assume anisotropic elastic scattering and introduce the probability of the scat-
tering W(9) per angle & per unit time.

The weak localization correction is expressed in terms of the cooperon amplitude
C(q,9,kg), where g is a small total cooperon momentumt, and 4 is the angle defining the
position of the electron momentum on the Fermi surface, k=kp (see, e.g., the review
article®), which is defined by the graphical equation in Fig. 1. The Green’s functions
(heavy lines) entering the cooperon equation are expressed in terms of the Hamiltonian
(1) and the elastic relaxation time 7,

1

GHk,w)= — , 2
w—(k*2m)— Q= (i/27)
where G* is a 2X2 matrix in spin indices, / is a unit matrix, and
1
—= f W(§)dd. (3)
7o

As usual, in weak localization theory the equation for the cooperon amplitude
C=C(q,0,kp) can be solved by perturbation theory, assuming that 1/7, is large com-
pared to the spin—orbit energy splitting and v g (v is the Fermi velocity). The cooperon
amplitude can be expanded in Fourier harmonics of . It turns out that the first and third
harmonics are small and can be expressed in terms of zero harmonic Cy. The substitution
of higher-order harmonics in the zero harmonic equation gives the effective matrix equa-
tion for Cy(kg,.q):

. 1

LC0=277V07'0 ’ (4)
where
i— l._{._l_ 2.2 02 02 1
=To| Tt 5 VFq T +2(Qir +Q5m)(1+op_to_py)
@
—mur{(o+p)g i+ (o +p_)g_];. (5)

Here we introduce the inverse phase relaxation time 1/7, as a cutoff at small g, the
transport times
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1 1

T—=f(1—cos OHW(6)dao, T—=j(1—cos 3NOW(6)de, 6)
1 3

the density of states vy=m/2m, o.=3(0,*i a,), p==3(p, *ip,) are the combinations of

the Pauli matrices acting on the upper and lower spin indices of Fig. 1, respectively, I is

the product of the unit matrices in the same basis, and q. =q,*iq,.

The solution of Eq. (4) can be represented in the form

ay, 1 *
“Uq)= > B, Yral @ BI74(7.9), ™)

2myyTy

where i, , and E (q) are normalized eigenfunctions and eigenvalues of the operator L:

Ly,=E.y,. ®)

These eigenfunctions can be classified by the value of the total spin momentum of two
particles: antisymmetrical singlet /=0 (r=0) and symmetrical /=1 (r=1,2,3); in the
latter case we use also the basis of the functions with integer spin momentum projection
onto the Z axis, ®,; , (m=1,0, —1).

The quantum interference correction to the conductivity is proportional to (see, e.g.,
Ref. 2) the sum

1 1
= aB: — — —
S(q) aEﬁcBa 2771'070( BT E) ©)

The singlet eigenvalue E; does not depend on the spin—orbit term

1 2
70, D=‘2"UF7'1.

E (D 24 !
0= q T
Ty

The triplet eigenvalues can also be easily found by solving Eq. (8) (for the total
momentum /=1) with

1
L=TO{Dq2+T—+2(Q%TI+Q§T3)(2—J3)—Tlvpﬂlx/i(f+q++./_q,) . (10
]

where J is the angular momentum operator: J=3(c+p) and J . =1/V2(c.+p.). It is
convenient to express the sum of inverse eigenvalues in (8) directly in terms of the
coefficients of secular equation. Such an approach gives us a possibility of finding a
solution of the problem in the case of applied magnetic field. Using expression (8) for S,
we obtain by standard procedure the weak localization correction to the conductivity
without the magnetic field retaining only logarithmic terms

Ao(0 il fs 2y 44
U( )_ T VOTOD (q ) (27_‘,)2
_ 62 11 T1+l 7'1+7'1 +11 TI+TI)
T 27tk 2" Ty n Te Tsu 2 n Te Tsz ) (11)
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Here /75, =1/75,,=1/2 Ts,,=2(Q3 1 +Q37;), where 75;; are the spin relaxation times
defined by the equation”® dS,/dt=— (S,/75;;). From expression (11) we see that with the
logarithmic accuracy the spin-dependent vector potential terms in the cooperon equation
are not essential for the temperature-dependent corrections to the conductivity.®

In the presence of a magnetic field B, the quantities ¢ . and q2 in Egs. (5) and (10)
are defined by gauge invariance and become q,=v2Sa and q_=v2Sa*, where
S 2=2eB/c, and @ and @™ are the operators which increase or decrease the number n of
the Landau level of the wave function F,:

(a*a)F,=(n+YF,, aF,=\nF,.,, a'F,+n+1F,.,.
The eigenvalue Ey(n) does not depend on the spin—orbit interaction and is given in

Ref. 1. According to Egs. (8) and (10), the solution g[;(n) in the basis of the functions
®,_, , with the momentum projection m has the form

Ui (n)=L1f1 AW)F, 3, fo {mF, 1, f 1 An)F,]. (12)

Substitution of (12) in Egs. (8) and (10) gives the system of algebraic linear equations for
the determination of f;,, and the determinant of the appropriate matrix gives the secular
equation for the eigenvalues E (n) (r=1,2,3). In the case n=0, F,,_; and F,_, must be
set to zero, and there is only one eigenvalue £ ,(0). In the case n=1, F,_, must be set
to zero, and there are two eigenvalues, F (1) and E,(1), which are defined by an appro-
priate quadratic equation. For all other n==2 there are three eigenvalues E (n)(r—1,2,3),
which are defined by a cubic equation. As in the case without a magnetic field, the sum
(9) can be expressed directly in terms of the coefficients of secular equation without
solving it. Being short on space, we give the final expression for the conductivity cor-
rection:

e [ 1 2ay+1+(Hgo/B)
Ao(B)=— 7 { —+ ]
47°h ay al[a0+(HSO/B]—(2H50/B)
i 3 3a2+2a,(Hso/B)—1-2(2n+1)(H}o/B)
i |n lant(Hso/B)lay-1a,1—2(Hgo/B)[(2n+1)a,~1]
+21 Ho gl Lo e +3C 3
ng Y3t : 13
where
H(p HSO _ ch _ chi 2 2
an—n+—+~l—_}~+—§—, ¢~ 2eDr.’ so—m(ZQﬁlJfZQﬂb),
x (14)
Hy= 202s, H=— (1+2)=-C+ > —
S0T4en 1T T geD g pi+z)= n(ntz)’

n=1

and C is the Euler constant. If we omit terms containing H 5,/B, we obtain the Hikami-
Larkin-Nagoaka expression from (13):
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FIG. 2. Magnetic field dependence of the
conductivity corrections in units of e2/4 mh
for Hgp/H ,=4, and Hgo/Hgpo=0 (1), 0.25
(2),05(3),1 4.

e’ 1 H, Hso\ 1 (1 H, 2Hg
A"‘B)'A“(O’_zw%["’(TF*‘B—) TR )

1 (1 H, H,+Hgy 1 H,+2Hg 1 H,

—4p<5+——B)—n B _El — 5 +§ln—B .

(15)

However, for the magnetic field B~Hyg, Egs. (13) and (15) are numerically different.
Figure 2 shows the dependence Aa{B)—Ao(0) calculated in accordance with Eq. (13) for
Hgo/H 4=4, Hgo/Hgp=1, 1/2, 1/4, and Hg,=0 when (15) is applicable. The real values
of Hgo/Hgp are close to 1. We see that in this case the value of Ac(B)—Ag{(0) for B
larger than H, and Hg, essentially increases. This is explained by the fact that for
nonvanishing H g, according to (13), Ac(0) contains, in addition to the logarithmic term
(11), a large additional contribution which also vanishes in a strong magnetic field.

The other difference (besides the difference in 7,, 73), compared with Refs. 2 and 3,
is in the value of Hg, in (13) and (15), which is twice as large in terms of the same
Hamiltonian. The relaxation time introduced in Refs. 2 and 3, 1/70,=(Q?)7 (here (?)
is the average over the Fermi surface) by definition does not coincide with the spin
relaxation times which are®!”

1
= 2((Q)—(Q) 7.

Sii
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[For comparison of the results we recall that in Refs. 9 and 10 the spin—orbit
Hamiltonian is in the form H¢,=1/20(}, instead of (1)]. Similar remark pertains to the
3D case which was considered in Ref. 2.
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