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There is a wide class of multidimensional cosmological models, other than the
Bianchi IX model (a mixmaster universe), which have the property of

being stochastic. A criterion for the occurrence of a stochastic behavior is proposed
for various models. © 1994 American Institute of Physics.

1. The homogeneous cosmological model Bianchi IX exhibits a random behavior
near a singularity.’ This model is important for cosmology, primarily because its behavior
is a prototype for the behavior of a general solution of Einstein’s equations near a
singular point:*> Specifically, near a singularity, the action for an arbitrary gravitational
field breaks up into a sum of independent terms, each of which is the action of a homo-
geneous model, as was shown in Ref. 3. The random nature of the dynamics leads to the
excitation of inhomogeneities of progressively larger coordinate scales, and it ultimately
determines the statistical properties of these inhomogeneities.>*

In addition, there is obvious interest in the possibility of generalizing these results to
the case of a multidimensional cosmology.>® Hints at the existence of such a cosmology
follow from various unification theories,’ for which the standard Einstein theory of gravi-
tation is merely a low-energy limit. Obviously, additional dimensions (if they exist)
should be manifested most clearly under extreme conditions—near a singular point.

The first indication of the spontaneous onset of a stochastic nature in a multidimen-
sional model was found in Ref. 8. It was shown there that in the case D=5 (D being the
dimensionality of the space—time) there is an oscillatory approach to the singularity, as in
Bianchi IX. We might add that the question of the transition of the behavior of various
multidimensional models to a stochastic nature has been studied by a variety of methods
in several places.” We show below that a random behavior near a singular point is a
general property of a wide class of multidimensional cosmological models.

2. We consider a homogeneous cosmological model with a spatial dimensionality
n+1. The metric of such a model is

ds*=N3di?— E eqao’;o",@dx"dxﬂ, (1)
a=0

235 0021-3640/94/040235-05$10.00 © 1994 American Institute of Physics 235



where 0= 0%dx” are given homogeneous basis forms which obey equations with the
structure

1
do'=3 Ci.0PNoe, ()

where Cj, are structure constants of some semisimple Lie algebra. The action for such a
model is, in Planckian units,

dz*
1=f pazt——)\C(p,z) dt, (3)

where the variables z? are related to the scale functions by the linear transformation
2°=A%q® with the constant coefficients® A} \ is a Lagrange multiplier related to the
evolution function N by A =N exp(— (1/2)24"), and the coupling Hamiltonian is

C=7""pupp+V(2). 4@

Here 7°’=diag(—1,1,...1), is the metric of the minisuperspace M"* !, and the potential
in (4) has the structure

V(z)=2, rexplu’z®). &)

i=1

The quantities r; and u., are constants, which are to be determined from the structure
constants Cj, and the matrix Ay Cosmological models with a multicomponent ideal
fluid® lead to similar potentials (here r’ and u’, are arbitrary).

We consider the following system of superspace coordinates (analogs of the
Misner—Chitre coordinates'®!):

2
1ty

I £
0= 1—)’2’ z=-2¢ 'I_—yg, y=|y|<1. (6)

=€

This coordinate system limits dynamic system (3) to the lower “light” cone
v_={z=(2%2)|2°< ~|z|}. In the new coordinates, action (3) becomes

dy* dr _
= — —— + p— 2
where U=e~ %'V, &?= 1/4 (1 —y?)?#?, and A = \e?'. Solving the Hamiltonian-coupling

equation C=0 for h, we can put action (7) in a formulation equivalent to the ADM
formulation:

dy*
1=f 7o ~h(mTy)dr, )

where 7 plays the role of the time (this situation corresponds to the choice of gauge
A= 1/2h), and the quantity k= JeE+U plays the role of the ADM Hamiltonian.
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The reduced configuration space (i.e., the “spatial” part of the minisuperspace
M"*1) is the n-dimensional sphere D"={y e R" ||y|<1}. This sphere, along with the
metric y,;= 4 8¢,/(1—y?)?, which is set by the kinetic term € in 4, is one realization of
the n-dimensional Lobachevskil space H"”.

3. We now consider the asymptotic case 7— —, which corresponds, for ze v_, to
2% —=, i, to a singular point in metric (1). In this asymptotic case, each component
of U [see(5)], satisfying the conditions

(u))?=(u")?—(uh)?>0—r;>0, uh>0, 9

has the form of a potential wall:

riexp{— 27+ uyz(y, 1)} - 0[A:(y)], (10)
where
to, x>0,
ol X ] = 11
0[] 0, x<0, (1)
and where the expression
wl? fui\?
Ay)=—|y+— +(—,- -1=0 (12)
Uy Uy

specifies the position of the wall.

Conditions (9) are satisfied for a wide class of models with an ideal fluid® and also
for several homogeneous models. We denote by A, the set of all terms of sum (5) in
potential U which satisfy condition (9). The asymptotic expression for the potential then
takes the form

Van)= 2 6[A). (13)

ieA,

Dynamic system (8) near a singular point thus reduces to a billiard in Lobachevskit
space H". The boundary of the billiard is formed by a system of spheres DY, i
e A, [see (12)]. Serving as a criterion for a random nature of the billiard is the condition
that its volume be finite.!? In this case, the invariant measure to which an arbitrary initial
distribution relaxes is given by

dxy.s) d"yd"" s

,§) =const———=—,
ply ( 1— yZ)
where s is a unit velocity vector.

It turns out that the condition that the volume of the billiard be finite can be formu-
lated in terms of the problem of the illumination of a sphere.'® In other words, if point
sources in R” at the points V= —w'/u}, completely illuminate a sphere S”~' of unit
radius centered at the origin of coordinates, then the volume of the billiard is finite. The
billiard is then random and has the property of mixing'* (the Lyapunov exponent is found
as the square root of the modulus of the curvature of the Lobachevskil space). By virtue
of conditions (9) we have |V/|>1; i.e., the point sources lie outside the illuminated
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a FIG. 1. Various billiard configurations in
a Lobachevskil plane (n=2). a)
m,=1; b) m,=3, compact billiard; ¢}
m, =3, billiard of infinite volume; d)
m . = 3, noncompact billiard with a finite

volume (Bianchi IX).
A / é
R A/

[o]

sphere, and the minimum number of sources required to completely illuminate the sphere
is equal to the dimensionality of the minisuperspace (i.e., n+1; Ref. 13).

Let us look at some simple examples. We denote by m . the number of spheres (12)
which form the boundary of the billiard (to simplify the illustration, we assume n=2
everywhere). We set m, = 1. The billiard shown in Fig. 1a then exists. Its boundary (a
potential wall) is formed by a circular arc which is centered at the point
P=V=—u/u, and which has a radius P,P=(V?—1)"2. The points of the absolute,
|yl=1, which are inaccessible to trajectories of the dynamic system, are those that lie on
the arc PP, illuminated by point P.

We now set m, >1. The situations shown in Fig. 1, b, ¢, d (for m, =3), are then
possible. In Fig. 1, b and d, the billiard has a finite volume (although the billiard is not an
intrinsic billiard in the latter case; i.e., points lying on the absolute are accessible to the
trajectories). In Fig. 1c, the volume is infinite, so the billiard is not a mixing billiard.

For cosmological model (1), a random behavior near the singularity is thus possible
only if the number of exponentials in the potential with a positive square of the vectors
uy, [see (9)] is no lower than the dimensionality of the minisuperspace. Corresponding to
the Bianchi IX model are the values n=2, m=6, m, =3 (the three arguments in the
exponential function have a null square and do not give rise to potential walls). The
billiard has the form shown in Fig. 1d (Ref. 10). The billiard has a finite volume (i.e., it
is a mixing billiard). The trajectories are geodesic lines of the Lobachevskii plane. Cor-
responding to motion along a geodesic is a so-called Kasner regime of the evolution of
the metric.! Reflection from the wall of the billiard corresponds to a change in Kasner
regime (a change in Kasner epoch).
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The quantum dynamics of these models can be described as in Ref. 15 for the
Bianchi IX model.
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