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It is argued that both confinement and superconductivity can be described on the
basis of the vacuum-correlation function method. The close similarity of

these phenomena is stressed. The fundamental vacuum correlation functions D
and D, are expressed in terms of the current correlation functions (ordinary and
monopole-like). © 1994 American Institute of Physics.

It is a widely accepted point of view that confinement in SU(N) gluodynamics and
QCD is a dual Meissner effect.'~> There is a strong support for this opinion from recent
Monte Carlo studies on the basis of the so-called Abelian-projection method.*~® Even the
profile of the QCD string is similar to that of the Abrikosov vortex line.*~?

At the same time, there are strong objections against the total similarity of the
underlying dynamics. Specifically, in superconductivity one can work out all dynamical
equations for fields as classical equations, following from, e.g., the Landau—Ginzburg
Lagrangian; i.e., there are classical configurations underlying the Abrikosov line and the
superconducting vacuum. In contrast to QCD [or SU(N) gluodynamics], it is unlikely that
field configurations are classical, since stable classical solutions are topological and the
net topological charge of vacuum is zero. In lattice calculations the nonperturbative
physics is ensured by a rather large set of configurations, which can be checked by the
so-called cooling method.'**®

It is therefore necessary to formulate both superconductivity and confinement using
a single and most general language which does not depend on the classical equations of
motion. We suggest in this letter the use of vacuum field correlation functions (current
correlation functions) to describe both phenomena and to demonstrate explicitly which
correlation functions are necessary for this purpose and what duality means in this lan-
guage. Remarkably, the same correlation functions are responsible for confinement in the
Abelian and non-Abelian theory. As a result, it is possible to obtain a purely quantum
superconductivity, which is described by quantum correlation functions, rather than by
classical equations.

1. The Wilson loop and correlation functions

We consider the Abelian theory, like QED with possible admission of magnetic
monopoles, since all final equations are applicable to the non-Abelian case, with obvious
insertion of parallel transporters, traces, etc. Confinement is usually characterized by the
area law of the Wilson loop along the trajectory of the charges e, —e:
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(W(C))=<exp ie fCA#dx”>=<exp ief F,, do#,,>=exp(—0'S), (D

where S is the area of the contour C in the 14 plane, and the string tension o is expressed
in terms of the field strength correlation functions (FSC) (F, (x)F p)\(y)),m’17

o=tet [ ErFLFL)+, @)

where the dots imply the contribution of higher-order correlation functions (FFFF), etc.,
which are unimportant for our purpose here.

On general grounds of Lorentz invariance, the FSC can be expressed in terms of two
basic scalar functions'” D(x) and D;(x), and we shall write separately the FSC for
electric and magnetic fields

E E
oD
L 1
(EAX)E{(y))= 6| DE+ D[ +h; P h; ETRAN (3)
oDY oD ,
(Hi(0OH)(y))= 8\ D"+ D+ h* —o | =hi by = 4)

where h=(h, h*)'*, and h,=x,~y .

For Lorentz-invariant vacuum, like that of QED or QCD, we have DE=DY"=D and
DE¥=D¥=D,. However, for the same theories but at nonzero temperature T, the electric
and magnetic correlation functions do not coincide. For a superconducting material the
Lorentz invariance is also violated, and again D# D" and DY ;&D’l" .

For the contour C in the 14 plane we obtain the following relation from (3):
2
e
0=—2—f d® xD(x)+--- . &)

Let us now consider a magnetic charge g of a type-1I superconductor. By analogy
with (2), we introduce the Wilson loop operator

(W*(c))=<exp ig jF;‘,, d(rw,>=exp(—(r*S). (6)

Here o* is expressed in terms of the dual fields F§y as in (2), but since
Fiy=€;34F,3=H{, we have, due to (4), the expression

g2
U*:E fdszlf(x). (7)

Comparison of (5) and (7) gives us the exact meaning of the notion of dual Meissner
effect, without reference to the underlying equations of motion. We need first to define
D(x) and D {(x) more explicitly, together with integrals (5) and (7), which may diverge.
As can be seen in (4), DE(x) can exist only due to the magnetic monopoles.!” Applying
d; to both sides of (4), we have

(div H(x),div H(y))=—¢*D"(x—y). 8)
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Hence D"(x) does not contain purely perturbative coatributions {at least in lowest or-
ders). In contrast, D,(x) may contain perturbative contributions, which should be sub-
tracted from it in (7). To lowest order we have

2
Dy(x)=D\(x)~ =, ©)

and D, should be replaced with D, (7). The phenomenon of the Abrikosov string there-
fore depends on the nonperturbative contents of D, i.e., on the possibility of creating a
mass parameter which characterizes the size of the string.

To see the mechanism of this mass creation, we can use the Ginzburg—Landau
equations to derive!

DEC(x—y)=(e? |- %)) (10)

xy

for the region outside the string core, r>¢ (£ is the coherence lengthlg), when
||= ¢pg=const, yields exponential decay at large distances, with the mass parameter

Dy(x)~e ™, m=e|dy|=1/8, (11)
where & is the London (Landau) penetration depth.

It is interesting to compare this behavior with that of D(x), which was measured
recently in SU(3) gluodynamics,19

D(x)~e #M p~1 GeVv. (12)

We see in (11) and (12) that the notion of duality of the QCD string and the Abrikosov
string has a more detailed correspondence. To see more of this correspondence, we can
compare profiles (off-string density distributions) for the QCD string and the Abrikosov
string.

2. String profiles

In the first case we can probe the field inside the QCD string using the so-called

connected p° and disconnected p™*° plaquette averages around the Wilson loop'' ™3

e (W(C)) = (W(C)(W(a))
g (W(e) ’
where C, is the contour formed by connecting Ao and the Wilson loop C, and W(o) is

the Wilson loop for Ao contour. On the basis of the vacuum correlation-function method
(VCM) we can obtain the following expression for the Wilson loop:

(13)

W(CU):<W(C)>( 1 +82f d0'14()’)A0';w<E1(Y)(I)Fuu(x)(b+> +-- " (14)
where the dots represent higher-order cumulants and the O((Ac)?) terms. Here @ de-
notes the parallel transporter ®(x,y)=Pexp ie [; A* dz,,.

As one can see, the p° quantity measures the spatial distribution of the components
of the field strength tensor F,, in presence of charges. The MC simulation show that the
electric field in the confinement phase is squeezed into flux tubes with an exponential®
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behavior of the flux tube profile inside the string. In the case of a very long string, we
obtain a simple analytic result for pj,. The transverse shape measured at the middle is
given by
. 27a’ 1 S
PLa= D0)(A+ux)=D1(0) 5 (ux)|e (15)

where the parameters obtained by us are
1~0.190382fm, a’D(0)~3.91468x107, D(0)=D(0)/3,
m from (11) is given by m=u, with a x/d.o.f.=0.17.

We see that such behavior of p{4 is in good agreement with the dual Meissner effect,
when the asymptotic limit of the field distribution of the vortex line is exponential:

J;:;—)m exp(—r/9), (16)

HiN=mr3

where d=const as £¢—0 limit, and §=68,4=[[ H(r)dr/H(>) as & goes ta zero.

3. Two-point FSC in terms of currents

Let us consider U(1) electrodynamics with monopoles [there may be, for example,
Dirac monopoles or topological defects in compact U(1) theory]

) * %
0;1. F,ul/:Jw a,u F,u.t/:]w

where the variables j, and ] , describe the normal and the monopole-like current, respec-

tively. In keeping with Ref. 20, we can express the observed field strength tensors F,,, in

terms of currents by redoubling field strength tensors H,, and G ,,, as follows:

*

*
— 1 a
Fo=H, %G Guv=% 4005 G
H,, and G, satisfy Maxwell’s equations
. *
Ou Hyy=Jju 0,6 =10
* _ * _
d,H,,=0, 4,G,,=0.
We can thus define the dual pair of potentials A, and A , in the usual way:
H,=d,A,—3d,A,
£ %
Gutd, A,—d, A,
In the Lorentz gauge for the Fourier components we then have
1 . E3 1 5‘3
Al =z 0, A=5].0.

For the field correlation function we easily obtain
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(Fp.o( k)va(k)> [<12>(k){ - 5;41/ 5p¢r}

kKo ] )

.2, %2 kpkv
X{(+ 12k} = Ope— = Oupt(nveop)

while for the dual cumulant, which is responsible for the conﬁnement of magnetic charge,

we have the same expression with the replacement j«— ] From (17) we deduce expres-
sions for the Fourier components of the D and D function

aD, (k) 1 (GP+]BHk) . . 12y(k)
a,iz =7 g k]2> , D(k)+2D1(k)=<—’,7)—,

or, a formal way, for the space forms
d *
Dy(h)=2 O7'07" 5o(j?+ ) (),
D(h)=—2D;(h)~ 0O~ (j?)(h).

Conclusion

We have described both confinement and superconductivity using the field correla-
tion functions D and D . In the first case, due to the Lorentz invariance DX =D =D and
this correlation function ensures confinement. In the case of superconductivity and in
absence of the condensate of the magnetic monopoles only D{I is nonzero and is respon-
sible for the confinement of magnetic charges and for the formation of the Abrikosov
fluxes. The correlation functions D and D are expressed in terms of the correlation
functions of charge and monopole currents. We have shown that duality of confinement
and superconductivity go beyond symmetric expressions for string tensions (5), (7) and
manifest themselves also in the form of the field correlation functions (11), (12) and the
string profiles (15), (16).

All the treatments above refer to the case of zero temperature. It would be very
interesting to extend this approach of the field (current) correlation functions to nonzero
temperatures and especially to the phase transition region.

We wish to thank M. 1. Polikarpov for a useful discussion.

Uin general, it can be shown that a two-point correlation function (which describes the response of the vacuum
to the source) coincides with the second derivative of the effective Ginzburg-Landau Hamiltonian:
A_I:[BzHeﬁ/aHle=H0]_l'
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