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A mechanism for the resonant generation of high harmonics of a laser beam is
discussed. This method may make it possible to increase the conversion
coefficient substantially and to move to shorter wavelengths. In particular, it is
estimated that harmonics in the region A=100 A can be generated with

an efficiency on the order of 10> in a beryllium plasma. © 1994 American
Institute of Physics.

Generating high harmonics of laser light, i.e., harmonics whose indices run to two
and three digits and whose wavelengths lie in the x-ray part of the spectrum, in atomic
jets' and low-density plasmas” is a promising method for producing coherent x radiation.
This phenomenon was first observed’ in the late 1980s. It occurs in fields comparable to
intraatomic fields, along with an ionization of the atoms and ions which are generated.
Record-short wavelengths near 8 nm have been achieved. Unfortunately, the conversion
coefficients which have been realized so far are very small, about 10 !° into one har-
monic in this region.’

In this letter we wish to discuss a version of resonant high-harmonic generation
which may make it possible to raise the conversion coefficients and to move to shorter
wavelengths, in particular, to the “water window,” 20—42 nm. The idea proposed below
was stimulated by the results of a numerical study of the Schrodinger equation for a
hydrogen atom in the strong high-frequency electric field of a light wave
(I=1.75X10"* W/cm?, fiw=0.4 Ry), carried out by DeVries.* It can be concluded from
an analysis of these results that in the well-developed stage of the interaction, in which
the average electron energy exceeds the ionization energy, an electron continues to os-
cillate near the nucleus for many optical periods, preserving the relatively small dimen-
sions and radiating harmonics. In the case of many-electron atoms and ions, the interac-
tion with the electrons of the relatively “porous” atomic core should prevent large-
amplitude (quasi-) periodic motion of an electron near the parent ion. It seems
improbable even in low-frequency fields. The discussion below is based on the assump-
tion that a motion of this sort is possible in the case of lithium-like systems.

A lithium-like ion with a charge Z—1 can be thought of, somewhat crudely, as a
system consisting of two subsystems: a compact, strongly bound helium-like ion of
charge Z and an outer electron, bound relatively weakly to the compact ion and lying far
away from it. This outer electron plays the role of an antenna. Oscillating in the optical
field, the outer electron not only radiates harmonics but also induces radiation of har-
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monics by K-shell electrons. Resonances of the helium-like ion should naturally be
manifested in this radiation. At the same time, they would have little effect on the motion
of the outer electron. This motion can be thought of as motion in the ficld of a structure-
less (point) charge.

Since the K shell has small dimensions, the field produced by the outer electron at
the position of the helium-like ion, E,;, can be assumed to be nearly uniform. We denote
by E; the amplitude of the jth harmonic of this field. For j# 1, the amplitude of the
dipole moment of the helium-like ion at the frequency jw is d;;= a;(jw)E;, where a; is
the polarizability of the ion. Acting on the outer electron, in addition to the optical field,
is the field set up by the helium-like ion. We denote by E;, the average value of this field,
and by —eE,, the force acting on the outer electron. Comparing the latter force with the
force ZeE,;, acting on the helium-like ion, and using Newton’s third law, we find
E,,=ZE,;. Correspondingly, the amplitude of the jth harmonic of the field E;, is ZE;,
while the amplitude of the jth harmonic of the dipole field at the outer electron in the case
j# lisd,;=Za.(jw)E;, where a (w)= —e%/mw? is the polarizability of an electron.
The amplitude of the resultant dipole moment of the lithium-like ion is thus

d=[Za,(jo)+ ai(jo)]E,. (1

At resonant frequencies, the ion component of the resultant dipole moment in (1) can
clearly be predominant. This component has been ignored in previous studies of high-
harmonic generation.

Yet another resonant factor arises in the expression for the harmonic intensity be-
cause of the dispersion of the refractive index, n(w). We assume that the generation
occurs in a plane plasma slab on which light is incident normally (along the x axis). The
plasma contains only lithium- and helium-like ions, with respective densities N, ; and
Nz, and free electrons, with a density N,=ZN;+(Z—1)N,_ . Since the average energy
of the outer electron in a lithium-like ion is considerably larger than the ionization energy,
its motion can be treated as nearly free in a calculation of the refractive index. Assuming
that the polarizability of the helium-like ion is small except at the frequencies of resonant
harmonics, and assuming that the polarizability of the electron is small except at the
fundamental frequency, we write

nlw)=n(jo)=27(N;+N;_)[Za(w)—ai(jw)]. (2)

If the slab is sufficiently thin, we can ignore the change in the intensity of the
exciting light in the slab, and we can also ignore geometric effects which influence the
synchronization of the high-harmonic generation.’ In this case we can treat it in the
plane-wave approximation. Using (1) and (2), and setting N,_(x)/Nz(x)= const, we
find the following expression for the conversion coefficient ;=1 /I (I; is the intensity of
the harmonic):

77,:lEj/Elzngg(Nz““Nzll)*z‘1_6‘%12, (3)
where ;= j(w/c) f(n(w)—n(jw))dx, E=(2ml/c)!?, and
0}':|Zae(jw)+ai(jw)|2/|Zae(w)—ai(jw)lz' (3a)
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The case of a relatively precise resonance, jw=~;, where w; is one of the resonant
frequencies of the helium-like ions, is naturally the most interesting case from several
standpoints. In principle, one could also raise the question of creating a population in-
version on their transitions in this case. However, that question requires a special analy-
sis. We assume here that the detuning AA=#A(jw— w;) is on the order of 1 eV. We then
have

;=|a(jw)/Zaw)]*=|fo2ZjA]?, (3b)
where f is the oscillator strength of the resonant transition.

To evaluate possible values of E;, we adopt several additional assumptions.

1. We denote by ¢the wave vector of the outer electron, and by r=/ p|o(p)|*dV its
“radius vector.” The field E,; is then directed along r, is smaller in absolute value than
e/r?, and can thus be written in the form

E.=er/(r’+r5)*?, (4)

where ry(¢) is a positive and otherwise unknown parameter.

2. The radius vector r(¢) varies nearly harmonically:
r=rsin(wt+ 9), (5a)
Fo<or,>0, d<w. (5b)

3. We assume t;=(k7— )/ w and 7,=ry(t;)/wr,, where k is an integer. On the
interval (¢,— 7, t;+ 7;) the foliowing conditions then hold:

ro<re, lroi‘0|<wr§. (6)
4. Finally, the quantity r,(¢;) varies only slightly with a variation in the index &:
ro(ty) —rotg+1) <Kro(ty). (M

Condition (5a) allows us to write field (4) in the form
Eei= 2 Eje\ ijwt+ c.c.,

where E,y=0. Under condition (5b) with N>0, we can also write

4eX(N+1 r [N\ (=2ry/r,)?
|E2N+1|2=—“( 3__') 1-5= (1“ ( g 5)2. 8
T, 2ro N+1 (1-2rg/r,)

[Expression (8) cannot be used if the absolute value of the difference in square brackets
is much less than one. To find it, we should expand (4) in a Taylor series in cos 2wt,
express the sine and cosine functions in terms of exponential functions, and sum the
coefficients of e¥/*'.]

Because of (6), the field E,; and therefore its spectrum are nearly independent of the
values of ry(r) far from the points t;,. They remain essentially the same if the actual
ro(f) dependence is replaced by a broken line connecting points [£,,74(¢;)] on the 1,r
plane. We will understand ry(¢) below to mean specifically this sort of function. Inequali-
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~N 70 4_[ % FIG. 1. Values of df/df calculated for a hydrogen
- 0% atom from Egs. (1), (8), and (9) with rg=rp
\.\ (crosses) and as given in Ref. 4 (squares).
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ties (5b), (6), and (7) then guarantee that the quantities E; are weak functions of the time
and allow us to assume that they are the Fourier amplitudes of the field E,; in (3).

Calculating E;, we find an equation which relates r, and rg:
ro=[(8ml/c) 2+ 2Ze(1—2ry/r M (ar ri)]e/mo?. (9)

Using (1), (8), (9), and df=ezr§/4, and varying the parameter ry, we calculated
values of d]z/df for the conditions of the numerical calculations of Ref. 4, and we com-
pared the results with the results given in Ref. 4. The best agreement was found with
rq equal to the first Bohr radius rg (Fig. 1). In this case, expression (8) is not valid for the
fifth harmonic (see the discussion above). For the seventh, it yields a result which is half
that in Ref. 4. For the other harmonics, the results differ by a factor of no more than 1.5.
{The values of dj‘?‘/df themselves vary from about 1.5X107* to 5X107? as j is varied
from 3 to 25.)

The good agreement of the results indicates that the dimensions of the distribution
|@(p)|? under the conditions of Ref. 4 track the changes in the position of its center of
gravity almost adiabatically. It is natural to suggest that the approximate equality
ro=ZrgRy/U also holds in a lithinm-like ion, where U is the ionization potential, if the
adiabatic parameter y=(2mU)"*w/|2¢E| is sufficiently large (it is y=2 under the con-
ditions of Ref. 4). At frequencies of the exciting light which are technically feasible, the
condition y>1 can be satisfied, along with the condition of rapid ionization, for a lithium
atom and for lithium-like beryllium. To illustrate the situation we will go through the
calculations for beryllium, ignoring the Stark shift of the levels.

We assume that we are using the beam from a KrF excimer laser. Within its gain
band, we can adjust to the frequency w=(wg,+ 0.5 eV/h)/25, where Awg,=123.67 eV is
the energy of the 1's—2'p transition in helium-like beryllium. At an intensity
[=6X10" W/cm?, values vy=1.3 are realized, and the value of the exponential function
in the Keldysh formula for the ionization probability is approximately the same as under
the conditions of Ref. 4. Working from Eqgs. (8) and (9) with these parameter values and
ro=ZrgRy/U=0.79 A , we find |E,5/E|*?=2.4X1073. At f=0.276 [as in the helium
atom; see (3b)] we have 6,5=0.75X 1073, and the maximum value of the conversion
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coefficient in (3) is 7;=0.8X 1073 This value is more than four orders of magnitude
higher than the energy conversion coefficient which has been achieved in high-harmonic
generation in this frequency range.’

Although it is unlikely that the equality ry=ZrzRy/U will be satisfied at technically
accessible frequencies for ions of heavier elements, conditions (5)—(7) can apparently
also be satisfied for ions of boron and carbon. The scheme discussed above should then
lead to a relatively high generation efficiency. Even the resonant transitions of helium-
like carbon lie in the x-ray “water window.” Some of them agree well with frequencies
of high-power lasers and hold promise for the realization of resonant high-harmonic
generation.

Thin plasma slabs with a controllable ion composition can be produced by (for
example) evaporating films with a thickness on the order of 107% cm with short laser
pulses.
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