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A charged Bose gas in a quantizing magnetic field below the critical temperature
for Bose condensation, T'.,(H), is analyzed. The Bose condensate forms a

vortex lattice in this case. In a periodic potential of this sort, the transverse motion
of a particle becomes unbounded because of the translational invariance of

the lattice. As a result, the spectrum of excitations is of a band nature and is
governed by the 2D quasimomentum in the perpendicular plane. The

Green’s function of the gas is found; the periodic vortex structure of the Bose
condensate is taken into account. The spectrum of excitations of a Bose

gas is derived for a square vortex lattice. © 1994 American Institute of Physics.

The discovery of superconductivity in metal oxides has recently revived interest in
the theory of a charged Bose gas. Several of the theories which have been offered to
describe the properties of the metal oxides are based on the idea of local pairs. We will
not go into the details of the mechanism by which local pairs form in these compounds,
but we would like to mention the bipolaron theory,’ in which a strong electron—phonon
interaction gives rise to small-radius bipolarons. In the limit of a low particle density, a
system of local pairs is a charged Bose gas, as was shown in Ref. 2.

The lower critical magnetic field H.; and the thermodynamic field H, were calcu-
lated in Ref. 3. It was shown that in intermediate magnetic fields (H.,<H<H_,) a
charged Bose gas is in a mixed state. As was pointed out in Ref. 2 for a charged Bose gas,
an external magnetic field quantizes the transverse motion of the bosons. At magnetic
fields H<H ., a macroscopic number of particles accumulate in the lower energy level,
which corresponds to the zeroth Landau level and to a zero momentum projection onto
the magnetic field. In this case the situation is dominated by bosons in a single Landau
level (the lower one; this is the ultraquantum limit). In a charged Fermi gas, Landau
quantization can again play an important role in shaping the superconducting state.*

Our purpose in this letter is to derive the spectrum of excitations of a charged Bose
gas in the mixed state. In fields H~H .,>H_, a Bose condensate forms a vortex lattice,
corresponding to an integer number of magnetic-flux quanta M. In this case, each Landau
level splits into M subbands.” To simplify the interpretation of the results, we consider a
model of the charged Bose gas with a short-range interaction potential. This model
follows from the theory of small-radius bipolarons in the limit of a low carrier density.

To find the spectrum of excitations of a charged Bose gas in a magnetic field below
the critical temperature T.,, we generalize the diagram technique of Ref. 6 to the case of
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a nonuniform Bose condensate. In fields H~H,>H_,, the condensate wave function
&4(r) is sought in the form

- M)?
maxy)exp(_(x ma,/ ))’ @

Eo(r) =exp| i 25| Crexp| ~i oy
0 exp 1212 ~ mexp 1 Ml 2[2

where C,4 4 =C,, and C,,=C, for a square lattice, and C,,=Coe'*" and 8,,= wm?/2
for a triangular lattice.

The Green’s function of bosons in a magnetic field is governed by the system of
equations

G(r,r’;iw,,)=G°(r,r’;iw,,)+j drdr,GO(ry 1’ siw,) 2, 1y iw,)G(r, 1y iw,)
+j dridr,GO(r) ,x'5iw,)2%(r, 1y iw,) F(nr,ie,), ()
F(r,r’;iw_,,)=f dride,GO(r' 1y ;iw,) 2y, 1y i w,) F (D1 im,)

+ f drydr,GO(r' v 5iw,) 2 (r,ry;iw,)G(r) 5 io,), 3)

where GO(r,r';iw,) is found from the equation
1
[iw,,— ﬁ[iﬁVT+ ZeA(r)c]z}GO(r,r’;iw,,)= Sr~r'). 4)

The charge of the bosons is assumed to be 2e.

As was shown in Ref. 3, a charged Bose gas is a type-II superconductor with a
large Ginzburg—Landau coefficient «. At fields H>H_;, the nonuniformity of
B(r)=V-A(r), which is governed by the penetration depth X, is small in comparison
with the distance between vortices and in comparison with the Larmor radius
12=(1 /2eH). The field B(r) can thus be assumed to be constant in Egs. (2) and (3). All
the calculations below are carried out in a system of units with Ai=c=k;=1. The
Green’s functions F and G and also the condensate wave function &, transform in the
following way upon translation by an arbitrary constant vector a

G(rr'iw,)=expl[iZe(r—r')A(a)]G(r+ar’ +ajiv,), (5)
F(rr';im,)=expli2e(r+r')A(a)]F(r+a,r +ajiw,), (6)
&o(r)=expli2erA(a))éo(r+a). (7

We choose the vector potential A(r)=HXr/2 with H=(0,0,H). As in Ref. 4, we use a
representation in which the x coordinate of the center of the Larmor orbits is a quantum
number:

ixy\ expli(—Xy/I*+p,z)] (x—X)? (x—X)
XLX’pz(r)::eXP EIT W\/ﬁ pl — 212 L I 5 (8)
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where X is the x coordinate of the center of the orbit, L is the index of the Landau level,
and H;(x) is a Hermite polynomial. The intrinsic energy is

2eH
=(L+12)—+ P:
2m’

A particle in the periodic potential formed by the vortex lattice of the Bose conden-
sate, (1), can be scattered only into a state which differs from the original state by a
reciprocal-lattice vector. Since the x coordinate of the center of the orbit, X, corresponds
to the momentum in the y direction, the change in momentum is AX=2mml 2/a yo where
m is an integer. In representation (8), the function G thus depends on only the combina-
tions X; =X+ wmlz/ay and X,=X~— 77'm12/ay .

The anomalous Green’s function F is zero except in the case in which the centers
of the boson orbits satisfy the Aharonov-Bohm interference conditions,

= (ma,/2M)+X and X,= (ma,/2M)—X. The Green’s functions G and F con-
structed in this manner satisfy periodicity conditions (5) and (6). Using the relation
ax/MZZle/ay , we expand G and F in the eigenfunctions in (8):

G(riv,)= 2 2 27712 Xe, x+ma 2 (OXE, x-ma om(F)G L 1, (X msiawy),
LyLy m

Frrsio,)= 2 2 12 Xe, a2 s X(O XL ma o ~x(EVFL 1, (K 0,).
Ly,Ly, m

©

To simplify the equations, we have omitted the variable p, from the expressions for
G and F. It follows from the quasiperiodicity conditions, (5) and (6), that we have

Fi o,(m+2M Xiw,)=F, ; (mXiw,),
(10)
Gp,,(X+a,miw,)=G, ;| (X,m;iw,).

In addition, the following relations hold for the Green’s functions G and F in a magnetic
field:

Gy, ,(Xmsiw,)=G[ | (X,~miio,),
FLI,Lz(maX;iwn)zFLl,Lz(m,“—X;iwn).

The quantity M and the ratio a,/a, are determined by the geometry of the lattice. For
square and triangular lattices we would have M =1 and M = 2respectively.

Let us rewrite Egs. (2) and (3) in representation (9):
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Gp, 1, X,m3i0,)=GY (i0,)8;, 1,8m0+ G ( zw,,)E E( L L,(

a, a, .

2Mm m—m'iio, GL,L X+ m(m—m ),m'iiw,

2 a, a,
+2L1,L' m-—-—m X—mm l(l)" FL’LZ 2M(
—M');iwn”, (11)

FLI,Lz(m,X;iw,,)=GL —iw )2 2 X EL L i ~m',m
) a,

——m’;lwn)FL',Lz[m’,X 2M(m m')iw, EL L,(

|

11 i Y= 1 .
EL;,LZ(X’m’lwn)_J’drlerXZI,X+maX/2M(r1)XL2,X—maX/ZM(r2)2 (rip25iw,),

—m X+2—1qm tw)GLzL,[ZM(m m'y-X,m'jiw,

where the intrinsic-energy parts 3% and 3! are given by

02 . — 02 .
ELI Lz(m’Xalwn)— f drldrzle .X‘*'max/zﬂ'l(rl)Xl"jz;max/zA'I_X(rZ)2 (rl Yy alwn)~

Using periodicity properties (10) and the parity of the Green’s functions G and F, we can
diagonalize Eq. (11) with respect to the variable m for a square lattice (M =1) by means
of the transformation

GLI,Lz(R;iwn)=E e*ZVimY/ﬂyG'LI’LZ(X 2M m,m; zw,,),
m

FLI‘LZ(R;iw,,)=e"‘.XY”22 ez"’"’”Y/“yFL,,L ( m, m—-Xiw ) (12)

m

2M

The function G(R) constructed in this manner is periodic, while F(R) is quasiperiodic,
in X and Y, with respective periods a, and a,. The quantity R determines the Brillouin
zone:

Gr, 1,(Riiw,) =G} (i0,) 81, 1,+ G} (i0) 2[5, (Rsiw,)Grry (Riiw,)
Ll
+300 L (Riw)Fp g (Riiw,)],
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Fr 1, (Rsio) =G} (=iw) 2 [2) | (~Riiw,)Fp; (Riiw,)
Ll

+3)  (Rsiw)Grr p,(Rsiwy)]. (13)

For fields H.,<<H<H ., we calculate the Green’s functions F(R)=F;(R) and
G(R)=Gyo(R) in the approximation of the zeroth Landau level (the ultraquantum limit).
In the calculations we replace the Green’s functions G with L # 0 by expression (4),
since the condensate density is low [(2eH/m>4 wnga/m, where ny is the density of the
condensate, and « is an effective scattering amplitude]:

_IN=R)=Gy (—iw,)

G(R) Det(R;iw,) ’
14
B EOZ(R) ( )
F{R)=~ Det(R;iw,) ’
where

2
Det(R;iw,,)=EZO(R)E°2(R)—[E”(R)+% -—/J,'—iwn}

2

p J .
X E”(—R)+5’%—p, +iw,

b

H
SUR)=SH(R), SURI=ZHR), p'=p-

Here u is the chemical potential, which is defined in exactly the same way as for an
uncharged Bose gas, by the equation

u' =31(0)-22%0). (15)

Using the replacement w,— —iw— &, we find an equation for the spectrum of excitations
of the charged Bose gas:

Det(R; w)=0. (16)

In a real system in which heavy bipolarons may form,’ there are light electrons,
which screen the bosons. Furthermore, in metal oxides the Coulomb part of the interac-
tion between bipolarons is small in comparison with the short-range interaction, because
of the large dielectric constant £(. As a result, the assumption of a short-range potential
between the charged bosons not only simplifies the description but is in fact the most
realistic assumption. In the immediate vicinity of the critical point 7,, we can restrict the
calculation of the intrinsic-energy parts 2'' and %% to the first correction in terms of the
condensate density np, and we can assume that the total particle density n=ny+n'is
independent of the coordinates. In first-order perturbation theory the intrinsic-energy part
311 is given by

267 JETP Lett,, Vol. 60, No. 4, 25 August 1994 D. A. Samarchenko 267



n 2vy [ dR X3 |y dp,

SUR)= o | el < ap s\ oo i) | oo "(R'=Rp,)+2p)(R),
\ y (17

where

|

for a square lattice [3;(v|7) are the Jacobi theta functions®], and

" x? X Y
E{no}(R)'——Znovoexp ~ 3 34 ta—y i =

y

n'(Rp)=—TlimY G(Rp,iw )e

70
is the number of particles above the condensate. The integration in (17) over X is between
infinite limits, while that over Y is over a period a,.

Because of the uniformity of the total boson density, the quantity 3 ''(R) is also
independent of the coordinates. To see this, we use the spectrum e(p,)=J \/E found in
Ref. 3 for w,=0 at H=H .,. Near H_, we consider a region in which the parameter

J(2mJ)"»
B Uohig

is much greater than one. Using the expression found for J in Ref. 3, we then find the
following equation for o(R)=3"(R)—2'(0):

! 2

212

0(R)=UO(R)+ 1nAf2 lzexp 93 i]lo(R'—R), (18)

ay

where *(R) = 2 nop(R)— E no}(®)- This equation can be solved analytically, but we will

content ourselves with an estlmate of oin the limit InA>1. In this case we have
o~(0%InA), so we can ignore %!}(R) in comparison with the anomalous intrinsic-
energy part. The spectrum is then determined by the anomalous intrinsic-energy part

32%R):
o’ (R)=3(R)Z™(R)-[22(0)]*. (19)

For the form of the wave function in (1), we find the folowing result for a square
vortex lattice, using the definition® of the Jacobi theta functions:

Xy Xx? Y—iX
Ve a

2
3

i) , (20)

3(R) = vonoexp(
y

where the lattice constants satisfy a,=a,=[y2m, v, is the interaction potential,
ng=(Ny/V) 1is the average density of the Bose condensate, and we have

S%(R)=32"(—R).

Near the bottom of the magnetic Brillouin magnetic zone, the excitation spectrum is
linear:
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w(R)= #9 53(0]i)R, @1

where R=JX*>+Y2.

The anisotropy of spectrum (16) leads to an anisotropy and a nonuniformity of the
local density of states of carriers. The density of states in turn determines the tunneling
conductivity o(V,k,r), which can be measured with a scanning tunneling microscope.

By analogy with conventional superconductors, we would expect a triangular vortex
lattice in a charged Bose gas. However, a study of the type of lattice which is actually
realized near H, goes beyond the scope of this letter.

'A. Alexandrov et al, Phys. Rev. B 33, 4226 (1986).

2A. S. Aleksandrov et al., Zh. Eksp. Teor. Fiz. 99, 574 (1991) [Sov. Phys. JETP 72, 321 (1991)].

3A. S. Aleksandrov et al., Zh. Eksp. Teor. Fiz. 93, 1007 (1987) [Sov. Phys. JETP 66, 567 (1987)].

43. C. Ryan and A. K. Rajagopal, Phys. Rev. B 47, 8843 (1993).

3J. Zak, Phys. Rev. A 134, 1607 (1964).

$S. T. Belyaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Sov. Phys. JETP 7, 289 (1958).

7A. S. Aleksandrov ef al., Fiz. Tverd. Tela (Leningrad) 33, 1243 (1991) [Sov. Phys. Solid State 33, 704
(1991)].

8G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York,
1968).

Translated by D. Parsons

269 JETP Lett., Vol. 60, No. 4, 25 August 1994 D. A, Samarchenko 269



