Localized electron states in a simple 1D chain
with a loop

Yu. M. Abrukina

Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic
of Uzbekistan, 700128 Tashkent, Republic of Uzbekistan

B. L. Oksengendler

Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan,
702132 Tashkent, Ulugbek, Republic of Uzbekistan

(Submitted 22 July 1994)
Pis’ma Zh. Eksp. Teor. Fiz. 60, No. 4, 258261 (25 August 1994)

A Green’s-function method is used for calculations on the onset of localized
electron states as a result of changing the connectedness of a simple 1D chain due
to the formation of a loop on the chain. © 1994 American Institute of

Physics.

Since the famous paper by Kronig and Penney,! who derived the electron spectrum
of a single-component, periodic, 1D chain, linear chains have served as an excellent
model for the analysis of many properties and effects of solids.” The resuits of this
research have taken on particular importance in the physics and biophysics of polymer
chains.” In the present letter we examine the onset of a local electron state due to a special
configuration of a quasi-1D chain, specifically, the formation of a loop on the chain (Fig.
1), with the result that the topology of the system is altered.

We consider the simple quasi-1D chain in Fig. 1. The Green’s function of this
system in the one-electron approximation, for the strong-coupling method, is

GUF, 7' w)= 2, ¢u(F)dF(F Gk, w), 1)
k

where G%(k,w)=1/[w—~A cos(ka)), ¢;(7) is the wave function of an electron in the
chain, given by

du(F)=2 e* e p(F~a, )N, a,=aX &,

e; is a unit vector directed along segment i, ¢(|7—a,|) is the normalized wave function
of an electron in an isolated atom in the s state near site n, A/2 is the resonant integral of
the coupling of two neighboring atoms (A <0}, and # is the number of atoms in the chain.
The electron spectrum of this system is a band with a dispersion relation

w=A cos(ka). (2)

We now form a loop on the linear chain, at which the distance between the nearest
atoms of the “contact” is R. As a result, there is a change in the connectedness of the
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a
/.\.\./W FIG. 1. Quasi-1D homoatomic chain with a

period a.

system (Fig. 2). We assume R=a. For all distances R under consideration, the exchange
interaction of the atoms of the contact outweighs other interactions. The Green’s function
with a loop then satisfies a Dyson equation

G=G"+G°VG, (3)
where V is the difference between the Hamiltonian of the chain with the loop and that of
a rectilinear chain, given by

A t t

V=I:I-f10=5 a;aﬁ- 5 a:a

Here the numbers p and s specify the atoms of the contact, so |p—s| a=ma is the
perimeter of the loop, and ¢/2 is the exchange integral between atoms of the contact.

p-

We seek the Green’s function of a chain with a loop in the form

G(7.7'w)= 2, ¢ul(F)pr(7)G(k,q,). (4)

k.q
Substituting (1) and {4) into (3), we find

G(k,q,0)=G"(k,0)| S+ 2 G(Q,4;0)Vig |, (5)
o
where Vy, is the matrix element
t t
— _ pikpa—iQsa_ _ iksa_,—iQpa
VkQ 5 4 € + ) € € . (6)
Substituting (6) into (S), we find an equation which we first multiply, term by term, by

e ~'9P% and then sum over k. We then repeat the procedure, multiplying by e ~'?%“. In this
manner we obtain a system of two equations with two variables:

FIG. 2. Quasi-1D homoatomic chain with a self-
intersection at sites p and s. The distance between the sites
of the “contact” is R.
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a%+Xal+vai=0,

(7N
ad+Xal+Yai=0,
where
X:z G(k,q;w)e—iksa, Y=2 G(k,q;w)e"‘kpa,
k k
aj=e °G%q;w), aj=e "Gq;w), ay=ai= EGO(kw ®)

t t
— 0 —ikma _ 2_ 0 ikma __
3N, E, G (k,w)e 1, a3 2Nk§' G (k,w)e

Since bound states exist when the Green’s function has an isolated pole, we restrict
the discussion to the solution of system (7) [we restrict the analysis to finding
=G (k,q;w)e *% and 2,G(k,q;w)e **P¢, since the poles of the latter coincide with
the poles of the Green’s function G(k,q;w)].

Solving system (7) for X and Y, and using (8), we can immediately state that the
energy of the bound states of a chain with a loop is found from the equations

( 1-5~ 2 GOk, w)e"k"'") ( 1-25 2 Gk, w)e™m

t2

1 2
’ZF(% GO(k,w)) =0. ©)

Since k runs over several discrete values, k=2 mv/(Na), where v is an integer from the
interval —N/2<p<N/2, we can replace the sum over k by an integral

N (2
S 5= | kard(ha)

Evaluating the resulting integrals in the region of forbidden energies, corresponding to
real values of w(w/|A|>1, w/|A|<—1), we find the following equations:

ltl(_l)m (w_(wZ__AZ)IIZ)m ltl 1
1 Hw =AY A] T2 (@ -An

X1+

(10a)

tl(-1)" (w—(wZ—AZ)”Z)"* 1 ~
A= AD\ T A 3 (w=anm| 7!

for w/|A]>1 and
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[1_ lel(—1)™ w+(w2—A2)1/2)"'_ ol 1 ]
2(w2—A2)1/2 IA‘ 2 (wz_Az)l/z
w|1- lt|§-—1)"’ w+(w2—A2)1/2)"'+ l_t_l 1 ]=0 (10b)
2w’ —AY)? 4] 2 (@ —AD)7
for w/JA|< —1. Using the change of variable
w=|A|(y*+1)/2y, ay
we can reduce Egs. (10) to the following form under the condition y #* 1:
[y2-1-gy+g(=)™y" " ly*—1+gy+g(=1)"y"*1]=0 (y>0), (12a)
[y?-1-gy—g(= D)™y " ly* = 1+gy—g(—=DH"y"*1]=0 (y<0), (12b)

where g=|t{/|A|. Since we have y>0 and y<0 for each of Egs. (12), by satisfying the
latter conditions we find

yi—1+gy+g(—1)mymti=0, (13)
y2—1-gy—g(—1)"ym*!1=0. (14)

The solutions of the latter equation are useful to classify on the basis of the parity of m.
Restricting the discussion to large values of m, we find

y=xyot+gyd 2y, —g—gy(2k+1)]

for m=2k and
y=2yo7 gy 2yo—g+ gyt (2k+2)]

for m=2k+1. Here yo=(g — vg°+4)/2. Recalling that the problem has been solved
for real values of the energy, for the case g=1, we find in the limit m — oo that two bound
states, characterized by energies w= *| A| V5/2, exist in the system.

In summary, the formation of a loop on a simple quasi-1D chain, which results in a
change in the connectedness of the system, gives rise to two local states, which lie in the
energy band gaps of the chain.
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