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The thermodynamics of the formation of an exciton phase in a layered
semiconductor structure with a narrow band gap is analyzed in a model in which
the phase of the order parameter is strictly fixed. Calculations are carried

out in a self-consistent fluctuation theory for static fluctuations of the amplitude
of the order parameter. The temperature of the transition to the exciton

phase derived for the case with fluctuation effects (T.) is much lower than the
temperature calculated in the mean-field approximation (7?). The phase
transition at T, is of first order. In a quasi-2D system, the temperature of the
supercooling of the normal phase, T’ (T’ <T,), is nonzero, while in a purely 2D
situation we would have 7' =0. The temperature of the superheating of the
exciton phase is T">T,. A phase with a short-range order exists over the broad
temperature range T,<T<T>. © 1994 American Institute of Physics.

1. The thermodynamics of systems with electron—hole pairing has been worked out
well for the model of an “exciton insulator” with a semimetallic spectrum of quasipar-
ticles. Since there is a small parameter here, T, /ey~ exp(—~1/U)<€1 for U<1 (T, is the
transition temperature, € is the Fermi energy, and U is the interaction constant), we can
make effective use of the mean-field approximation in this model, as in the BCS model in
the theory of superconductivity."

In the case of a semiconducting spectrum,” we are confronted by the entire question
of constructing a thermodynamics of electron—hole fluctuations and of their effect on the
temperature and nature of the transition to the exciton phase. It is easy to show that the
mean-field approximation yields only a purely symbolic estimate of T : T(C)~E ¢/ |In®|,
where @=(E/E,—1)~(U/Uy—1), E,, is the width of the band gap, and E, is the
binding energy in the exciton. The condition for an exciton instability (6>0) holds only
if the interaction constant is sufficiently large: U>U, where U is the interaction for
which we have E,=E.,. The situation here stands in contrast with the semimetallic
model, in which the instability occurs at arbitrarily small values of U. It would seem that
the thermodynamics of the semiconductor model should be similar to that of the Stoner
model, in which a governing role is played by fluctuations of the order parameter, not by
the temperature dependence of the mean-field characteristics. Below we discuss a ““self-
consistent fluctuation theory,” in which the role of the small parameter is played directly
by the quantity <1 (by analogy with the approach of Ref. 3). This theory predicts a
transition temperature 7. which is sharply lower than that of the mean-field approxima-
tion (T‘c’). It also predicts the onset of a region of short-range order over the broad
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temperature range 7. <T< Tg It furthermore predicts a dependence of the nature of the
transition on the dimensionality of the system, which is not present in the mean-field
approximation.

2. Let us examine the model of a narrow-gap layered semiconductor with a sym-
metric, anisotropic spectrum of electrons and holes:

E k=% (‘2“ ;:'1“ + 2mL) (1)
Here ky , are the quasimomenta along and across the layers, m , are the corresponding
effective masses, and we are using the approximation my/m <€1 everywhere, unless
otherwise specified. We assume that the condition for an exciton instability, >0, holds.
The phase of the order parameter is strictly fixed; i.c., the interaction involving an inter-
band transition of quasiparticles is not small in comparison with the density—density
interaction,’ and there is no soft (Goldstone) mode of collective excitations. We consider
temperatures T<€ T(C) and we assume that the “weak-coupling condition” ®<€1 holds. We
restrict the discussion to the static version of the self-consistent fluctuation theory.* We
write the thermodynamic potential of the model, normalized to the state density, as
follows:

0= 2 aAA—q+B 2 AA_gAgAy - qoqrs )

9.9'.q"

where Aq is a Fourier component of the order parameter describing the electron—hole
pairing,' we have IAq|<E and the coefficients a4 and g are independent of the tem-
perature at T<T A distinctive feature of functional (2) is that we have ag—<0 and
B>0. Spec1ﬁcally, in our case we have

1
ag=-O+yQf+tyidl, V=%
q 19 + 7. 1= dmiE,

] I @)

yl:ZrTEg’ B=2_E:2,‘

Because of this distinctive feature, expression (2) is substantially different from the
standard Ginzburg—Landau functional for a system with a second-order phase transition.
In this case aqy-( changes sign at the point of the transition.

To analyze functional (2), we follow the approach of Ref. 5. Specifically, we single
out the average component (A) and we set A(p)=(A)+ SA(p), where SA(p) is a fluctua-
tion of the order parameter at the point p. We construct a Gaussian approximating func-
tional:

Q @(A)2+/3(A)4+2 (aq+6B8(A)2+A)SAL+BB(SAR)?. )

"PP

The coefficients A and B are to be determined. The average is to be taken over configu-
rations of functional (4). From the conditions for minimization and convexity of the
functionals (2 and (2,,, we find one obvious relation:
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A=(3-B)B(5A%). 5)

A second necessary relation is found from the self-consistency equation for the static
component of the generalized susceptibility,’ Xq(T):

(A) a(sA%)

A=6ﬂ<5A2) 1+mm, (6)

with the known thermodynamic expression ( 5A2%)= TZ4xq(T). The equilibrium values
of (A) and (8A?) can be found from the system of equations

(A)[~O+2B(A)*+6B(54%)]=0, (7
(38%)= 75 g 68(8) +AT, ®
q

where A is given by (6). Solving Eq. (8), a nonlinear differential equation, generally
requires numerical methods. Nevertheless, we can draw several important conclusions
without going through such calculations. We first determine the existence of the normal
phase with (A)=0 in a purely 2D case. The static generalized susceptibility xo(T) is
found for this case from the equation

-1
- Xo t¢ 2w
1
==-20+ —~lIn—v—, (=4, 9)
Xo To ' x, 1 4 E,
where To=21y)/38, and W is the limiting energy of electron—hole excitations (in order
of magnitude we have W~E,® <E, and this energy is independent of the temperature
in our problem). Under the condition T<W, T, we find from (9)

X {(T)=¢exp(— 20T, /T). (10)

At “high” temperatures (W<T<T) we find

T 12
xa‘(T)=(T—O Z) : (11)

Consequently, a normal phase with (A)=0 can exist over the entire temperature range
down to T=0, and the reciprocal susceptibility y, ! never vanishes. In the case of a
quasi-2D system (in which the mass m, is not infinite), the temperature dependence
Xo '(T) begins to deviate from (10) at low temperatures, and x, ' crosses zero at 7",
going negative at T<<T'. A normal phase can thus exist only at T>T'. A qualitative
estimate yields 7'~ @T,(8/{)"? under the conditions d=my/m, <[<1.

At the same time, the ground state at 7=0 is characterized by a nonvanishing value
(AY(T=0)=(0/28)"?, as can be clearly seen by analyzing functional (3). In other
words, an exciton phase, the most favorable phase, exists. In the mean-field theory, the
(AY(T) dependence is a monotonic decrease, and zero is reached at T=T" at which
X0 '(T) simultaneously changes sign. The situation in our case is more complicated. The
results of a numerical solution of system (5)—(7) for the 2D case (m, — ) and quasi-2D
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case (m/m, <1), carried out over a broad range of parameter values, are shown quali-
tatively in Figs. 1 and 2 [also shown here are plots of (A)(T) and (SA?)(T)]. Some
general conclusions follow from these calculations:

1. An exciton phase exists below a certain temperature 7", where the solution
(A) # 0O arises abruptly, in the interval 0<T7<T".

2. A normal phase exists above T'<<T”, and in the purely 2D case we have
T'—0.

3. The thermodynamic potentials of the two phases become equal at the temperature
T., T'<T.<T". Consequently, T’and T" are the temperatures of the supercool-
ing and superheating, and T, is the temperature of a first-order transition from the
normal phase to the exciton phase.

A7)

FIG. 2. The mean square fluctuation (SA%)(T) versus

- ! the temperature in the 2D case for the stable phase.
' N(T)=(8A2)(T)/[{A)(0) "
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In order of magnitude we have T., T"~OT,~OF,< T°. In the region
T.<T< T? there is a short-range order, and the temperature dependence x, Y1) {or,
equivalently, ( SA%)(T)] is given by equations like (10) and (11), with a replacement of
the exponential behavior by a power-law behavior.

Finally, we take a brief look at the 3D case (m|=m =m). The expressions for the
coefficients aq and B in terms of microscopic parameters in this case are only slightly
different from (3); we will not reproduce them here. A main conclusion which follows
from an analysis of (5)-(7) is that the transition to the exciton phase is a second-order
transition at temperatures T,=T'=T"~@T,, at which the reciprocal susceptibility
Xo !(T) simultaneously vanishes. In the temperature interval 7, <T<T 2 there is a short-
range order, characterized by a nearly linear x; '(T) dependence.

Some real systems, in which the exciton effects discussed above might play an
important role, are heterostructures and superlattices based on certain I[II-V compounds
and narrow-gap IV-V semiconductors. In a heterostructure of the GaSb-InAs—-GaSb
type with a wide InAs layer, the GaSb valence band overlaps the InAs conduction band.®
In other words, the seed one-electron spectrum of the structure is gapless (semimetallic)
in this case. However, this overlap can easily be eliminated by quantum-size effects for
InAs layers with a thickness less than 85 A or by a shift of the edge of the conduction
band upon doping of the indium arsenide interlayer with (for example) aluminum. In the
case of interest here, the width of the band gap must be less than or on the order of 0.01
eV, the corresponding thickness of the InAs interlayer would be 75-85 A . In advanced
molecular beam epitaxy, the required tuning of the width of the band gap of the structure
can be achieved by either method (either by varying the thickness of the layers or by
varying their composition), for systems based on either III-V or IV-VI compounds.

The onset of an exciton phase is known' to lead to a renormalization of the matrix
elements for the interaction of quasiparticles with external fields. This renormalization
may be manifested, in particular, by the onset of structural features in optical spectra, in
the spin-relaxation time, etc., as the temperature is varied (“coherence effects,” which
have analogs in superconductivity). In addition, at the point of the transition to the
exciton phase we would expect a surge on the temperature dependence of the derivative
of the conductivity with respect to the temperature, since at this point the width of the
band gap in a one-particle spectrum of the structure increases abruptly in the case of a
first-order phase transition.

According to Ref. 7, a condensation of indirect excitons in structures based on
GaAs/AlAs has recently been observed experimentally through changes in photolumines-
cence spectra in a magnetic field at low temperatures (<4 K).
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